Advanced Search
TONG Jiahui, HAN Yongquan, HONG Haitao, SUN Zhenbang. Mechanism of weld formation in variable polarity plasma arc-MIG hybrid welding of high strength aluminium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 69-72,91. DOI: 10.12073/j.hjxb.2018390125
Citation: TONG Jiahui, HAN Yongquan, HONG Haitao, SUN Zhenbang. Mechanism of weld formation in variable polarity plasma arc-MIG hybrid welding of high strength aluminium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 69-72,91. DOI: 10.12073/j.hjxb.2018390125

Mechanism of weld formation in variable polarity plasma arc-MIG hybrid welding of high strength aluminium alloy

More Information
  • Received Date: November 19, 2016
  • VPPA-MIG hybrid welding integrates the advantages of strong arc penetrability of VPPA and high deposition efficiency in MIG welding. It can overcome the disadvantages of narrow range of stable technological parameters in vertical position in VPPA welding and shallow penetration in MIG welding. The weld pool images on 2A12 aluminum alloy with thickness of 6 mm in VPPA-MIG hybrid welding were obtained by Red Lake Y4 high-speed camera acquisition system. The force model of weld pool was established. The influence of different energy ratio of the hybrid heat source on the weld formation and the weld pool was analyzed. The weld formation in VPPA-MIG hybrid welding and MIG welding were investigated. The results show that VPPA-MIG hybrid heat source is easier to maintain weld formation stability than single VPPA heat source. When the VPPA current is close to the perforation threshold, a low-power MIG heat source can be used to achieve the weld formation on 2A12 aluminum alloy with thickness of 6 mm; When the VPPA energy ratio is too low, the keyhole is shallower, the melting efficiency is lower, and the effect of increasing the penetration depth can not be achieved; When the VPPA energy ratio is too large, it can damage the stability of weld pool and the weld formation. Under the same heat input power, the weld formation in VPPA-MIG hybrid welding was narrower and deeper when comparing with conventional MIG welding. The welding productivity was improved dramatically
  • 陈树君, 蒋 凡, 张俊林, 等. 铝合金变极性等离子弧穿孔横焊焊缝成形规律分析[J]. 焊接学报, 2013, 34(4): 1-6.Chen Shujun, Jiang Fan, Zhang Junlin,et al. Principle of weld formation in variable polarity keyhole plasma arc transverse welding of aluminum alloy[J]. Transactions of the China Welding Institution, 2013, 34(4): 1-6.[2] Essers W G, Liefkens A C. Plasma-MIG welding developed by philips[J]. Machinery and Production Engineering, 1972, 21(3129): 632-633.[3] Essers W G. Method of device for arc welding: U. S Patent, 4039800[P]. 1977-08-02.[4] Ono, Kohei, Liu Zhongjie,et al. Development of a plasma-MIG welding system for aluminum[J]. Welding International,2003, 23 (11): 805-809.[5] Bai Yan, Gao Hongming, Wu Lin. Plasma-gas metal arc welding procedure on low carbon steel[J]. Transactions of the China Welding Institution, 2006, 27(9): 59-62.[6] Bai Yan, Gao Hongming, Qiu Ling. Droplet transition for plasma-MIG welding on aluminium alloys[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(12): 2234-2239.[7] 王长春, 杜 兵. 等离子-MIG/MAG复合热源焊接技术研究与应用[J]. 焊接, 2009(12): 62-64.Wang Changchun, Du Bing. Investigation and application of plasma-MIG/MAG hybrid welding technology[J]. Welding & Joining, 2009(12): 62-64.[8] 魏 波. 铝合金等离子-MIG复合焊工艺研究[D]. 成都: 西南交通大学, 2014.[9] 韩永全, 洪海涛, 郭 龙, 等. 交直流混合VPPA 特性及铝合金立焊工艺[J]. 焊接学报, 2013, 34(9): 59-62.Han Yongquan, Hong Haitao, Guo Long,et al. Vertical welding of aluminum alloy during variable polarity plasma arc welding process with AC-DC mixing output current[J]. Transactions of the China Welding Institution, 2013, 34(9): 59-62.[10] 韩永全, 杜茂华, 陈树君,等. 铝合金变极性等离子弧穿孔焊过程控制[J]. 焊接学报, 2010, 31(11): 93-96.Han Yongquan, Du Maohua, Chen Shujun,et al. Process control of variable polarity keyhole plasma arc welding for aluminum alloy[J]. Transactions of the China Welding Institution, 2010, 31(11): 93-96.[11] 程兰征, 章燕豪. 物理化学[M]. 第二版. 上海: 上海科学技术出版社, 2006.[12] Ready J F. Industrial applications of lasers[M]. New York: Academic press, 1978.
  • Related Articles

    [1]DU Maohua, HAN Yongquan, FAN Weijie, HONG Haitao. Mechanism of weld formation using double pulsed variable polarity plasma arc welding of high strength aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(2): 43-47. DOI: 10.12073/j.hjxb.20190810002
    [2]JIA Yazhou, CHEN Shujun, XIAO Jun, BAI Lilai. Effect of pulse laser-arc arrangement on metal transfer and bead formation characteristics of aluminum alloy welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 17-24. DOI: 10.12073/j.hjxb.2019400306
    [3]HAN Yongquan, HONG Haitao, SHI Zengjie, YAO Qinghu. Mechanism of weld formation in laser beam-variable polarity plasma arc hybrid heating source welding of aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(12): 5-8.
    [4]HONG Haitao, HAN Yongquan, TONG Jiahui, PANG Shigang. Study of arc shape and voltage-current characteristics in variable polarity plasma arc-MIG hybrid welding of aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 65-69.
    [5]HAN Yongquan, ZHANG Shiquan, PANG Shigang, HONG Haitao. Arc behavior during variable polarity TIG welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(9): 51-54,59.
    [6]ZHANG Qinlian, YANG Chunli, LIN Sanbao, FAN Chenglei. Characteristics of weld formation in variable polarity plasma arc horizontal welding of 2A14 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (9): 79-82.
    [7]CHEN Shujun, JIANG Fan, ZHANG Junlin, HUANG Ning, ZHANG Yuming. Principle of weld formation in variable polarity keyhole plasma arc transverse welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (4): 1-6.
    [8]YANG Jing, LI Xiaoyan, GONG Shuili, CHEN Li, XU Fei. Characteristics of aluminium-lithium alloy joint formed by YAG-MIG hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (2): 83-86.
    [9]GAO Zhiguo, HUANG Jian, LI Yaling, WU Yixiong. Effect of relative position of laser beam and arc on formation of weld in laser-MIG hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 69-73.
    [10]Feng Lei, Chen Shujun, Ding Jingzhu, Yin Shuyan. Stability of Molten Pool and Bead Formation in High speed CO2 Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (3): 164-169.
  • Cited by

    Periodical cited type(4)

    1. 郭顺,王朋坤,顾介仁,彭勇,徐俊强,周琦. 电弧熔炼Ti6Al4V/B_4C复合材料微观组织与力学性能. 机械制造文摘(焊接分册). 2023(06): 19-26 .
    2. 郭顺,王朋坤,顾介仁,彭勇,徐俊强,周琦. 电弧熔炼Ti6Al4V/B_4C复合材料微观组织与力学性能. 焊接学报. 2022(09): 62-68+117 . 本站查看
    3. 杨姣,付永红,杨蕾,李鑫. 碳化钒陶瓷增强铁基表面复合层的组织和力学表征. 热加工工艺. 2021(18): 88-90+94 .
    4. 刘丹丹,樊自拴. 超高温陶瓷涂层的研究进展. 材料保护. 2020(05): 105-110 .

    Other cited types(4)

Catalog

    Article views (583) PDF downloads (6) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return