Citation: | XU Lianyong, LONG Zhiping, ZHAO Lei, HAN Yongdian, PENG Chentao. Effect of stress concentration at weld toes on combined high and low cycle fatigue of EH36 steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(7): 1-9. DOI: 10.12073/j.hjxb.20230619003 |
In order to study the effect of stress concentration at the weld toes on combined high and low cycle fatigue(CCF) of EH36 steel welded joints for ship structure, CCF tests were carried out on EH36 steel double-sided butt joints with 20 mm thick and different weld profiles. The results show the extent of reduction in joint life subjected to CCF increased with increasing high stress ratio of high cycle fatigue; Based on the digital image correlation method, the higher the stress concentration coefficient at the weld toes, the lower the CCF life of the joints. The extent of reduction increased with increasing stress ratio of high cycle fatigue. Validation of the models based on experimental data shows that joints with high stress concentration coefficient have lower fatigue life and increased dispersion of life prediction results; The Palmgren-Miner model and Zhu model do not fully consider the CCF damage effect, which leads to dangerous prediction results of CCF life. The modified Zhu model fully considers the influence of CCF. There are few prediction data points that the predicted life is higher than the actual life.The prediction results are relatively safer. The dispersion and the error are smaller.
[1] |
Wang Y, Liu J, Hu J, et al. Fatigue strength of EH36 steel welded joints and base material at low-temperature[J]. International Journal of Fatigue, 2021, 142: 105896. doi: 10.1016/j.ijfatigue.2020.105896
|
[2] |
Song Y, Yang P, Xia T, et al. The crack growth rate and crack opening displacement of EH-36 steel under low-cycle fatigue loading[J]. Ocean Engineering, 2023, 280: 114734. doi: 10.1016/j.oceaneng.2023.114734
|
[3] |
Li L, Jia Q, Wan Z, et al. Experimental and numerical investigation of effects of residual stress and its release on fatigue strength of typical FPSO-unit welded joint[J]. Ocean Engineering, 2020, 196: 106858. doi: 10.1016/j.oceaneng.2019.106858
|
[4] |
Wang C, Wang S, Xie L, et al. Fatigue crack growth behavior of marine steel under variable amplitude loading-combining DIC technique and SEM observation[J]. International Journal of Fatigue, 2023, 170: 107508. doi: 10.1016/j.ijfatigue.2023.107508
|
[5] |
Ibarra M A C, Simão M L, Videiro P M, et al. Long-term fatigue analysis of mooring lines considering wind-sea and swell waves using the Univariate Dimension-Reduction Method[J]. Applied Ocean Research, 2022, 118: 102997. doi: 10.1016/j.apor.2021.102997
|
[6] |
魏国前, 陈斯雯, 余茜, 等. 焊趾多裂纹的试验与仿真分析[J]. 焊接学报, 2019, 40(11): 75 − 81. doi: 10.12073/j.hjxb.2019400291
Wei Guoqian, Chen Siwen, Yu Xi, et al. Experimental and simulation study on multiple cracks of weld toe[J]. Transactions of the China Welding Institution, 2019, 40(11): 75 − 81. doi: 10.12073/j.hjxb.2019400291
|
[7] |
Luo Y, Ma R, Tsutsumi S. Parametric formulae for elastic stress concentration factor at the weld toe of distorted butt-welded joints[J]. Materials, 2020, 13(1): 169. doi: 10.3390/ma13010169
|
[8] |
Ottersböck M J, Leitner M, Stoschka M. Characterisation of actual weld geometry and stress concentration of butt welds exhibiting local undercuts[J]. Engineering Structures, 2021, 240: 112266. doi: 10.1016/j.engstruct.2021.112266
|
[9] |
张晨星. 焊缝形貌对焊接强度的影响研究[D]. 河北: 燕山大学. 2022.
Zhang Chenxing. Study on the influence of weld morphology on weld strength[D]. Yanshan: Yanshan University. 2022.
|
[10] |
Wu X, Kang H. A fracture mechanics-based stress approach for fatigue life prediction of welded joints considering weld profile effect[J]. Theoretical and Applied Fracture Mechanics, 2023, 123: 103698. doi: 10.1016/j.tafmec.2022.103698
|
[11] |
Bai S, Li Y, Huang H, et al. A probabilistic combined high and low cycle fatigue life prediction framework for the turbine shaft with random geometric parameters[J]. International Journal of Fatigue, 2022, 165: 107218. doi: 10.1016/j.ijfatigue.2022.107218
|
[12] |
Tsutsumi S, Fincato R, Luo P, et al. Effects of weld geometry and HAZ property on low-cycle fatigue behavior of welded joint[J]. International Journal of Fatigue, 2022, 156: 106683. doi: 10.1016/j.ijfatigue.2021.106683
|
[13] |
Gan J, Liu X, Wang Z, et al. Experimental study on the fatigue damage of designed T-type specimen with high-low frequency superimposed loading[J]. International Journal of Fatigue, 2021, 143: 105985. doi: 10.1016/j.ijfatigue.2020.105985
|
[14] |
Qiu S, Cui H, Zhang H, et al. A dual-threshold modelling approach for fatigue life prediction under combined high and low cycle fatigue[J]. International Journal of Fatigue, 2022, 164: 107110. doi: 10.1016/j.ijfatigue.2022.107110
|
[15] |
Zhao Z, Lu K, Wang L, et al. Prediction of combined cycle fatigue life of TC11 alloy based on modified nonlinear cumulative damage model[J]. Chinese Journal of Aeronautics, 2021, 34(7): 73 − 84. doi: 10.1016/j.cja.2020.10.021
|
[16] |
Det Norske Veritas. Fatigue strength analysis of offshore steel structures[S]. Norway: Academic Press, 2001.
|
[17] |
ASTM E466-Standard practice for conducting force controlled constant amplitude axial fatigue tests of metallic materials[S]. England: Edinburgh University Press, 2015.
|
[18] |
Liang H, Zhan R, Wang D, et al. Effect of crack-tip deformation on fatigue crack growth: A comparative study under overload/underload conditions[J]. Theoretical and Applied Fracture Mechanics, 2022, 118: 103268. doi: 10.1016/j.tafmec.2022.103268
|
[19] |
Huang H, Hu M, Xu A, et al. In-situ strain measurement and error analysis of arc welding with 2D digital image correlation[J]. China Welding, 2022, 31(3): 17 − 23.
|
[20] |
Ushirokawa O. Stress concentration factor at welded joints. II.-probabilistic approach[J]. Ishikawajima-Harima Engineering Review, 1984, 24(2): 98 − 103.
|
[21] |
Tsuji I. Estimation of stress concentration factor at weld toe of non-load carrying fillet welded joints[J]. Journal of the West-Japan Society of Naval Architects, 1990, 80: 241 − 251.
|
[22] |
徐连勇, 彭晨涛, 赵雷, 等. 深水浮体平台焊接结构疲劳性能测试方法[J]. 焊接学报, 2022, 43(11): 84 − 90. doi: 10.12073/j.hjxb.20220703001
Xu Lianyong, Peng Chentao, Zhao Lei, et al. Research on fatigue performance test method of welding structure of floating platform in deep water[J]. Transactions of the China Welding Institution, 2022, 43(11): 84 − 90. doi: 10.12073/j.hjxb.20220703001
|
[23] |
周昊, 刘英芳, 刘刚, 等. 考虑残余应力的焊接结构多轴疲劳准则[J]. 焊接学报, 2017, 38(11): 41 − 46. doi: 10.12073/j.hjxb.20160114002
Zhou Hao, Liu Yingfang, Liu Gang, et al. Multiaxial fatigue criteria of welded structures considering the residual stress[J]. Transactions of the China Welding Institution, 2017, 38(11): 41 − 46. doi: 10.12073/j.hjxb.20160114002
|
[24] |
Jiang W, Xie X, Wang T, et al. Fatigue life prediction of 316L stainless steel weld joint including the role of residual stress and its evolution: Experimental and modelling[J]. International Journal of Fatigue, 2021, 143: 105997. doi: 10.1016/j.ijfatigue.2020.105997
|
[25] |
张涛, 王东坡, 邓彩艳, 等. 双周疲劳载荷作用下焊接接头线性累计损伤分析[J]. 焊接学报, 2014, 35(3): 61 − 65.
Zhang Tao, Wang Dongpo, Deng Caiyan, et al. Linear cumulative damage analysis of welded joints under combined cycle fatigue[J]. Transactions of the China Welding Institution, 2014, 35(3): 61 − 65.
|
[26] |
幸杰, 韩永典, 徐连勇, 等. 基于连续损伤力学的高低周复合疲劳损伤[J]. 焊接学报, 2017, 38(7): 63 − 66. doi: 10.12073/j.hjxb.20150708001
Xing Jie, Han Yongdian, Xu Lianyong, et al. High cycle and low cycle hybrid fatigue damage based on continuum damage mechanics[J]. Transactions of the China Welding Institution, 2017, 38(7): 63 − 66. doi: 10.12073/j.hjxb.20150708001
|
[27] |
魏国前, 郭子贤, 闫梦煜, 等. 基于Pavlou方法的焊接结构疲劳寿命预测[J]. 焊接学报, 2023, 44(9): 16 − 23. doi: 10.12073/j.hjxb.20221201001
Wei Guoqian, Guo Zixian, Yan Mengyu, et al. Pavlou approach based fatigue life prediction for welded structures[J]. Transactions of the China Welding Institution, 2023, 44(9): 16 − 23. doi: 10.12073/j.hjxb.20221201001
|
[28] |
Miner M A. Cumulative damage in fatigue[J]. Journal of Applied Mechanics, 1945, 12: 159 − 164. doi: 10.1115/1.4009458
|
[29] |
Trufyakov V I, Koval' chuk V S. Determination of life under two-frequency loading. Report no. 2. Proposed method[J]. Strength of Materials, 1982, 14(10): 1303 − 1308. doi: 10.1007/BF00770123
|
[30] |
Zhu S, Yue P, Yu Z, et al. A Combined high and low cycle fatigue model for life prediction of turbine blades[J]. Materials, 2017, 10(7): 698. doi: 10.3390/ma10070698
|
[31] |
Han L, Huang D, Yan X, et al. Combined high and low cycle fatigue life prediction model based on damage mechanics and its application in determining the aluminized location of turbine blade[J]. International Journal of Fatigue, 2019, 127: 120 − 130. doi: 10.1016/j.ijfatigue.2019.05.022
|
[32] |
杨民, 李青键, 黄志勇. 低周-超高周复合循环疲劳实验及寿命模型研究[J]. 实验力学, 2021, 36(5): 638 − 646. doi: 10.7520/1001-4888-20-175
Yang Min, Li Qingjian, Huang Zhiyong. Combined low and very-high cycle fatigue test and life model study[J]. Journal of Experimental Mechanics, 2021, 36(5): 638 − 646. doi: 10.7520/1001-4888-20-175
|
[1] | YUAN Mingxin, DAI Xianling, LIU Chao, SUN Hongwei, WANG Lei. Feature parameters extraction of ship welds based on spatial position and contour distance[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 84-92. DOI: 10.12073/j.hjxb.20211208002 |
[2] | HE Jianping, TAO Xuyang, JI Yongfeng. Dynamic distribution characteristic of temperature field and weld morphology control in pulsed microplasma arc welding ultra-thin sheets[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 67-73. DOI: 10.12073/j.hjxb.20200423001 |
[3] | WANG Angyang, HE Jianping, WANG Xiaoxia, LINYANG Shenlan. Distribution characteristics and parameters effects of MPLW arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(8): 77-81. DOI: 10.12073/j.hjxb.20151007002 |
[4] | JIANG Qixiang, ZOU Yirong, DU Dong. Spatial distribution measurement of gas tungsten arc current density based on image analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(8): 101-104. |
[5] | CHEN Haiyong, DU Xiaolin, DONG Yan. Tiny visual feature extraction of random changing weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(5): 97-101. |
[6] | SHI Duanhu, GANG Tie, YANG Feng. Automatic corresponding criterion of bulk defects in I style weldments[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (5): 53-56. |
[7] | SHI Duanhu, GANG Tie, HUANG Chuanhui, YANG Genxi. Automated extraction of spatial locating data for bulk defects in double T joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (4): 69-72. |
[8] | SHI Duan-hu, GANG Tie, YUAN Yuan. Spatial distribution features of weld defects in complex structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (11): 71-74. |
[9] | SHI Yu-xiang, QIAO Ya-xia, Masahiro TOYOSADA. Distribution feature of welding aerosol particle size[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (1): 31-34. |
[10] | Han Guoming, Li Junyue, Wu Zhao, Liu Gang. Distribution Feature of Welding Arc Ultraviolet Spestrum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (4): 213-218. |