Citation: | LIU Xue, ZHONG Shifang, XU Lianyong, ZHAO Lei, HAN Yongdian. Corrosion fatigue behavior of X65 pipeline steel welded joints under different stress ranges[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 24-31, 78. DOI: 10.12073/j.hjxb.20220830001 |
张强, 吕福亮, 贺晓苏, 等. 南海近5年油气勘探进展与启示[J]. 中国石油勘探, 2018, 23(1): 54 − 61. doi: 10.3969/j.issn.1672-7703.2018.01.006
Zhang Qiang, Lyu Fuliang, He Xiaosu, et al. Progress and enlightenment of oil and gas exploration in the South China Sea in recent five years[J]. China Petroleum Exploration, 2018, 23(1): 54 − 61. doi: 10.3969/j.issn.1672-7703.2018.01.006
|
田野. “深海一号”傲然面世— —中国海洋石油勘探开发进入“超深水时代”[J]. 中国石油企业, 2021(6): 24 − 32,111. doi: 10.3969/j.issn.1672-4267.2021.06.007
Tian Ye. “Shenhai No. 1” proudly lauched— —CNOOC’S exploration and development capabilities have entered the “ultra-deep water era”[J]. Chinese Petroleum Enterprises, 2021(6): 24 − 32,111. doi: 10.3969/j.issn.1672-4267.2021.06.007
|
何琦, 汪鹏. 深海能源开发现状和前景研究[J]. 海洋开发与管理, 2017, 34(12): 66 − 71. doi: 10.3969/j.issn.1005-9857.2017.12.012
He Qi, Wang Peng. Current situation and prospect of deep sea energy development[J]. Marine Development and Management, 2017, 34(12): 66 − 71. doi: 10.3969/j.issn.1005-9857.2017.12.012
|
Cheng A, Chen N Z. An extended engineering critical assessment for corrosion fatigue of subsea pipeline steels[J]. Engineering Failure Analysis, 2018, 84: 262 − 275. doi: 10.1016/j.engfailanal.2017.11.012
|
Ossai C I, Boswell B, Davies I J. Pipeline failures in corrosive environments—A conceptual analysis of trends and effects[J]. Engineering Failure Analysis, 2015, 53: 36 − 58. doi: 10.1016/j.engfailanal.2015.03.004
|
Mansor N I I, Abdullah S, Ariffin A K, et al. A review of the fatigue failure mechanism of metallic materials under a corroded environment[J]. Engineering Failure Analysis, 2014, 42: 353 − 365. doi: 10.1016/j.engfailanal.2014.04.016
|
Farhad F, Smyth-Boyle D, Zhang X. Fatigue of X65 steel in the sour corrosive environment—A novel experimentation and analysis method for predicting fatigue crack initiation life from corrosion pits[J]. Fatigue & Fracture of Engineering Materials & Structures, 2021, 44(5): 1195 − 1208.
|
王歧山, 李鸿瑾, 何川, 等. 加载波形对X65钢腐蚀疲劳裂纹萌生及扩展的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 227 − 234.
Wang Qishan, Li Hongjin, He Chuan, et al. Effect of loading modes on initiation and propagation of corrosion fatigue cracks of X65 steel[J]. Chinese Journal of Corrosion and Protection, 2022, 42(2): 227 − 234.
|
王晶. H2S环境中疲劳裂纹扩展速率数学模型的建立及行为研究[D]. 北京: 北京工业大学, 2010.
Wang Jing. Modeling of fatigue crack growth rate and study on crack propagation behavior in H2S environment[D]. Beijing: Beijing University of Technology, 2010.
|
程攀. H2S腐蚀产物膜对MS X65管线钢氢渗透动力学行为的影响[D]. 武汉: 武汉科技大学, 2017.
Cheng Pan. Effect of sulfide films formed on MS X65 steel surface on hydrogen permeation in H2S environments[D]. Wuhan: Wuhan University of Science and Technology, 2017.
|
张体明, 王勇, 赵卫民, 等. 模拟煤制气环境下X80管线钢及HAZ的氢脆敏感性[J]. 焊接学报, 2015, 36(9): 43 − 46.
Zhang Timing, Wang Yong, Zhao Weiming, et al. Hydrogen embrittlement susceptibility of X80 steel substrate and HAZ in simulated coal gas environment[J]. Transactions of the China Welding Institution, 2015, 36(9): 43 − 46.
|
侯双平. 微观组织及晶界结构对管线钢氢致开裂行为的影响[D]. 武汉: 武汉科技大学, 2020.
Hou Shuangping. Effect of microstructure and grain boundary structure on hydrogen-induced cracking behavior of pipeline steel[D]. Wuhan: Wuhan University of Science and Technology, 2020.
|
彭先华, 刘静, 黄峰, 等. 微观组织对管线钢氢致裂纹扩展方式及氢捕获效率的影响[J]. 腐蚀与防护, 2013, 34(10): 882 − 885.
Peng Xianhua, Liu Jing, Huang Feng, et al. Effect of microstructure on hydrogen induced crack propagation mode and hydrogen capture efficiency of pipeline steel[J]. Corrosion and Protection, 2013, 34(10): 882 − 885.
|
严春妍, 张根元, 刘翠英. X80管线钢焊接接头氢分布的数值模拟[J]. 焊接学报, 2015, 36(9): 103 − 107.
Yan Chunyan, Zhang Genyuan, Liu Cuiying. Numerical simulation of hydrogen distribution in welded joint of X80 pipeline steel[J]. Transactions of the China Welding Institution, 2015, 36(9): 103 − 107.
|
贾清松, 吕小青, 韩永典, 等. 电化学充氢条件下管线钢焊接接头对氢的吸收能力分析[J]. 焊接学报, 2017, 38(9): 111 − 114. doi: 10.12073/j.hjxb.20150813001
Jia Qingsong, Lyu Xiaoqing, Han Yongdian, et al. Hydrogen absorbing ability of pipeline steel welded joint in condition of electrochemical hydrogen[J]. Transactions of the China Welding Institution, 2017, 38(9): 111 − 114. doi: 10.12073/j.hjxb.20150813001
|
Han Yongdian, Zhong Shifang, Tian Lei, et al. Welding heat input for synergistic improvement in toughness and stress corrosion resistance of X65 pipeline steel with pre-strain[J]. Corrosion Science, 2022, 206: 110478. doi: 10.1016/j.corsci.2022.110478
|
[1] | QI Bojin, CAI Linwei. Review on Regualtion Means in Wire Arc Additive Manufacturing of Aluminum Alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240515002 |
[2] | LI Ke, NIU Ben, PAN Linlin, YI Jianglong, ZOU Xiaodong. Effect of heat input on microstructure and mechanical properties of wire arc additive manufactured super duplex stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 94-101. DOI: 10.12073/j.hjxb.20221214003 |
[3] | ZHOU Zhaoyi, ZHANG Yanan, WANG Xiaofeng, LIU Jun. Weld surface defect detection based on improved two-dimensional principal component analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 70-76. DOI: 10.12073/j.hjxb.20210412001 |
[4] | LI Lei, YU Zhishui, ZHANG Peilei, ZHUANG Qiaoqiao, NIE Yunpeng. Microstructural characteristics of wire and arc additive layer manufacturing of TC4 components[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(12): 37-43. DOI: 10.12073/j.hjxb.2018390294 |
[5] | TANG Xiaohong, PANG Tao. Blowhole and alloy element burning loss of Al-Mg-Si 6082 alloy joint welded by argon arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (4): 21-24. |
[6] | NIU Ruifeng, LIN Binghua, WANG Yani, YANG Xingfei. Evaporation loss of Mg element in pulsed laser welding of 5A05 aluminum alloy and distribution of micro-hardness of welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (3): 81-84. |
[7] | LI Zhigang, ZHANG Hua, JIA Jianping. Plasma component calculation in underwater wet welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 13-16. |
[8] | WANG Xing-jun, HUANG Wen-rong, WEI Qi-long, SHEN Xian-Feng. Evaporation loss of Mg element in 5A06 aluminium alloy electron beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (11): 61-64. |
[9] | SUN Guang, HE Jian-ping, ZHANG Chun-bo, BAI Ri-hui, WU Yi-xiong. Parameters regulated multi slope waveform control gas metal arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (3): 63-66. |
[10] | Yang Hai-lan, Cai Yan, Chen Geng-jun, Wu Yi-xiong. Principal component analysis based artificial neural networks for arc welding quality control[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (4): 55-58,64. |
1. |
孙全喜,王伟,石智成,宋亚辉,李海豹,梁家煜,尹飞. 基于焊接角变形的辅具优化设计. 机械制造文摘(焊接分册). 2023(05): 42-45+48 .
![]() |