Advanced Search
LIU Xue, ZHONG Shifang, XU Lianyong, ZHAO Lei, HAN Yongdian. Corrosion fatigue behavior of X65 pipeline steel welded joints under different stress ranges[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 24-31, 78. DOI: 10.12073/j.hjxb.20220830001
Citation: LIU Xue, ZHONG Shifang, XU Lianyong, ZHAO Lei, HAN Yongdian. Corrosion fatigue behavior of X65 pipeline steel welded joints under different stress ranges[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 24-31, 78. DOI: 10.12073/j.hjxb.20220830001

Corrosion fatigue behavior of X65 pipeline steel welded joints under different stress ranges

More Information
  • Received Date: August 29, 2022
  • Available Online: June 11, 2023
  • The corrosion fatigue behavior and mechanism of X65 pipeline steel welded joints under different stress ranges in H2S environment were studied through corrosion fatigue experiment. The microstructure, fracture and crack propagation path of the specimens were observed. The results show that the microstructure of X65 pipeline steel weld is mainly composed of proeutectoid ferrite, granular bainite and M/A component, and the M/A component increases the brittleness of the weld. The coarse grain heat affected zone is mainly composed of lath bainite and granular bainite. The hardness of weld and coarse grain heat affected zone is high, and the toughness is low. The corrosion fatigue mechanism of X65 pipeline steel welded joints under different stress ranges is mixed of anodic dissolution and hydrogen embrittlement, but damages caused by corrosion is more significant under low stress ranges. With the increase of stress amplitude, the corrosion fatigue life of the specimens decreases significantly, and the rate of crack propagation grows rapidly. In addition, the secondary cracks mainly spread along the grain boundary of the bainite strip, and the crack tip passivates at the acicular ferrite and the proeutectoid ferrite, which have exhibited excellent resistance to hydrogen embrittlement.
  • 张强, 吕福亮, 贺晓苏, 等. 南海近5年油气勘探进展与启示[J]. 中国石油勘探, 2018, 23(1): 54 − 61. doi: 10.3969/j.issn.1672-7703.2018.01.006

    Zhang Qiang, Lyu Fuliang, He Xiaosu, et al. Progress and enlightenment of oil and gas exploration in the South China Sea in recent five years[J]. China Petroleum Exploration, 2018, 23(1): 54 − 61. doi: 10.3969/j.issn.1672-7703.2018.01.006
    田野. “深海一号”傲然面世— —中国海洋石油勘探开发进入“超深水时代”[J]. 中国石油企业, 2021(6): 24 − 32,111. doi: 10.3969/j.issn.1672-4267.2021.06.007

    Tian Ye. “Shenhai No. 1” proudly lauched— —CNOOC’S exploration and development capabilities have entered the “ultra-deep water era”[J]. Chinese Petroleum Enterprises, 2021(6): 24 − 32,111. doi: 10.3969/j.issn.1672-4267.2021.06.007
    何琦, 汪鹏. 深海能源开发现状和前景研究[J]. 海洋开发与管理, 2017, 34(12): 66 − 71. doi: 10.3969/j.issn.1005-9857.2017.12.012

    He Qi, Wang Peng. Current situation and prospect of deep sea energy development[J]. Marine Development and Management, 2017, 34(12): 66 − 71. doi: 10.3969/j.issn.1005-9857.2017.12.012
    Cheng A, Chen N Z. An extended engineering critical assessment for corrosion fatigue of subsea pipeline steels[J]. Engineering Failure Analysis, 2018, 84: 262 − 275. doi: 10.1016/j.engfailanal.2017.11.012
    Ossai C I, Boswell B, Davies I J. Pipeline failures in corrosive environments—A conceptual analysis of trends and effects[J]. Engineering Failure Analysis, 2015, 53: 36 − 58. doi: 10.1016/j.engfailanal.2015.03.004
    Mansor N I I, Abdullah S, Ariffin A K, et al. A review of the fatigue failure mechanism of metallic materials under a corroded environment[J]. Engineering Failure Analysis, 2014, 42: 353 − 365. doi: 10.1016/j.engfailanal.2014.04.016
    Farhad F, Smyth-Boyle D, Zhang X. Fatigue of X65 steel in the sour corrosive environment—A novel experimentation and analysis method for predicting fatigue crack initiation life from corrosion pits[J]. Fatigue & Fracture of Engineering Materials & Structures, 2021, 44(5): 1195 − 1208.
    王歧山, 李鸿瑾, 何川, 等. 加载波形对X65钢腐蚀疲劳裂纹萌生及扩展的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 227 − 234.

    Wang Qishan, Li Hongjin, He Chuan, et al. Effect of loading modes on initiation and propagation of corrosion fatigue cracks of X65 steel[J]. Chinese Journal of Corrosion and Protection, 2022, 42(2): 227 − 234.
    王晶. H2S环境中疲劳裂纹扩展速率数学模型的建立及行为研究[D]. 北京: 北京工业大学, 2010.

    Wang Jing. Modeling of fatigue crack growth rate and study on crack propagation behavior in H2S environment[D]. Beijing: Beijing University of Technology, 2010.
    程攀. H2S腐蚀产物膜对MS X65管线钢氢渗透动力学行为的影响[D]. 武汉: 武汉科技大学, 2017.

    Cheng Pan. Effect of sulfide films formed on MS X65 steel surface on hydrogen permeation in H2S environments[D]. Wuhan: Wuhan University of Science and Technology, 2017.
    张体明, 王勇, 赵卫民, 等. 模拟煤制气环境下X80管线钢及HAZ的氢脆敏感性[J]. 焊接学报, 2015, 36(9): 43 − 46.

    Zhang Timing, Wang Yong, Zhao Weiming, et al. Hydrogen embrittlement susceptibility of X80 steel substrate and HAZ in simulated coal gas environment[J]. Transactions of the China Welding Institution, 2015, 36(9): 43 − 46.
    侯双平. 微观组织及晶界结构对管线钢氢致开裂行为的影响[D]. 武汉: 武汉科技大学, 2020.

    Hou Shuangping. Effect of microstructure and grain boundary structure on hydrogen-induced cracking behavior of pipeline steel[D]. Wuhan: Wuhan University of Science and Technology, 2020.
    彭先华, 刘静, 黄峰, 等. 微观组织对管线钢氢致裂纹扩展方式及氢捕获效率的影响[J]. 腐蚀与防护, 2013, 34(10): 882 − 885.

    Peng Xianhua, Liu Jing, Huang Feng, et al. Effect of microstructure on hydrogen induced crack propagation mode and hydrogen capture efficiency of pipeline steel[J]. Corrosion and Protection, 2013, 34(10): 882 − 885.
    严春妍, 张根元, 刘翠英. X80管线钢焊接接头氢分布的数值模拟[J]. 焊接学报, 2015, 36(9): 103 − 107.

    Yan Chunyan, Zhang Genyuan, Liu Cuiying. Numerical simulation of hydrogen distribution in welded joint of X80 pipeline steel[J]. Transactions of the China Welding Institution, 2015, 36(9): 103 − 107.
    贾清松, 吕小青, 韩永典, 等. 电化学充氢条件下管线钢焊接接头对氢的吸收能力分析[J]. 焊接学报, 2017, 38(9): 111 − 114. doi: 10.12073/j.hjxb.20150813001

    Jia Qingsong, Lyu Xiaoqing, Han Yongdian, et al. Hydrogen absorbing ability of pipeline steel welded joint in condition of electrochemical hydrogen[J]. Transactions of the China Welding Institution, 2017, 38(9): 111 − 114. doi: 10.12073/j.hjxb.20150813001
    Han Yongdian, Zhong Shifang, Tian Lei, et al. Welding heat input for synergistic improvement in toughness and stress corrosion resistance of X65 pipeline steel with pre-strain[J]. Corrosion Science, 2022, 206: 110478. doi: 10.1016/j.corsci.2022.110478
  • Related Articles

    [1]QI Bojin, CAI Linwei. Review on Regualtion Means in Wire Arc Additive Manufacturing of Aluminum Alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240515002
    [2]LI Ke, NIU Ben, PAN Linlin, YI Jianglong, ZOU Xiaodong. Effect of heat input on microstructure and mechanical properties of wire arc additive manufactured super duplex stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 94-101. DOI: 10.12073/j.hjxb.20221214003
    [3]ZHOU Zhaoyi, ZHANG Yanan, WANG Xiaofeng, LIU Jun. Weld surface defect detection based on improved two-dimensional principal component analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 70-76. DOI: 10.12073/j.hjxb.20210412001
    [4]LI Lei, YU Zhishui, ZHANG Peilei, ZHUANG Qiaoqiao, NIE Yunpeng. Microstructural characteristics of wire and arc additive layer manufacturing of TC4 components[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(12): 37-43. DOI: 10.12073/j.hjxb.2018390294
    [5]TANG Xiaohong, PANG Tao. Blowhole and alloy element burning loss of Al-Mg-Si 6082 alloy joint welded by argon arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (4): 21-24.
    [6]NIU Ruifeng, LIN Binghua, WANG Yani, YANG Xingfei. Evaporation loss of Mg element in pulsed laser welding of 5A05 aluminum alloy and distribution of micro-hardness of welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (3): 81-84.
    [7]LI Zhigang, ZHANG Hua, JIA Jianping. Plasma component calculation in underwater wet welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 13-16.
    [8]WANG Xing-jun, HUANG Wen-rong, WEI Qi-long, SHEN Xian-Feng. Evaporation loss of Mg element in 5A06 aluminium alloy electron beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (11): 61-64.
    [9]SUN Guang, HE Jian-ping, ZHANG Chun-bo, BAI Ri-hui, WU Yi-xiong. Parameters regulated multi slope waveform control gas metal arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (3): 63-66.
    [10]Yang Hai-lan, Cai Yan, Chen Geng-jun, Wu Yi-xiong. Principal component analysis based artificial neural networks for arc welding quality control[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (4): 55-58,64.
  • Cited by

    Periodical cited type(1)

    1. 孙全喜,王伟,石智成,宋亚辉,李海豹,梁家煜,尹飞. 基于焊接角变形的辅具优化设计. 机械制造文摘(焊接分册). 2023(05): 42-45+48 .

    Other cited types(0)

Catalog

    Article views (222) PDF downloads (44) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return