Advanced Search
GAO Hui, ZHOU Canfeng, HU Xiaohui, LI Wenlong. Microstructure and properties of annular coaxial powder feeding TIG cladding layer doped with SiC for 316L stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 49-56. DOI: 10.12073/j.hjxb.20230424001
Citation: GAO Hui, ZHOU Canfeng, HU Xiaohui, LI Wenlong. Microstructure and properties of annular coaxial powder feeding TIG cladding layer doped with SiC for 316L stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 49-56. DOI: 10.12073/j.hjxb.20230424001

Microstructure and properties of annular coaxial powder feeding TIG cladding layer doped with SiC for 316L stainless steel

More Information
  • Received Date: April 23, 2023
  • Available Online: January 29, 2024
  • TIG cladding is an economical and efficient surface repair method. Compared with the traditional preset powder method, coaxial powder feeding method has excellent adaptability, but there are relatively few experimental studies. The annular coaxial powder-feeding TIG cladding torch was designed and manufactured independently. Compared with the tubular coaxial powder-feeding TIG cladding torch, the cladding layer manufactured has no defects such as arc extinguishing position pit, uneven weld seam and inconsistent weld seam width, and has higher cladding efficiency. By optimizing the parameters of welding line energy, powder feeding and SiC concentration, TIG cladding with annular coaxial powder feeding was carried out on the surface of 316L stainless steel, and single-layer single-pass cladding and single-layer multi-pass cladding with excellent appearance were obtained. The microhardness measurement, microstructure and element composition analysis, macro electrochemical corrosion test, micro electrochemical corrosion test and wear resistance test of the cladding layer were carried out, and compared with the base metal. The research shows that the SiC powder introduced by the annular coaxial powder feeding TIG effectively improves the corrosion resistance and wear resistance of the cladding layer.

  • [1]
    Meng J S, Jin G, Shi X P. Structure and tribological properties of argon arc cladding Ni-based nanocrystalline coatings [J]. Applied Surface Science, 2018, 431(feb.15): 135 − 142.
    [2]
    Lu J, Wang B, Qiu X, et al. Microstructure evolution and properties of CrCuFexNiTi high-entropy alloy coating by plasma cladding on Q235[J]. Surface and Coatings Technology, 2017, 328: 313 − 318. doi: 10.1016/j.surfcoat.2017.08.019
    [3]
    Gong F B, Shen J, Gao R H, et al. Influence of heat treatment on microstructure and mechanical properties of FeCrNi coating produced by laser cladding[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(8): 2117 − 2125. doi: 10.1016/S1003-6326(16)64328-5
    [4]
    黎红. 钛的氩弧焊, 激光焊和等离子弧焊的实验研究[J]. 华西口腔医学杂志, 1998, 16(3): 219 − 221.

    Li Hong. Study on titanium joined with tungsten inert gas welding, laser welding and plasma welding[J]. West China Journal of Stomatology, 1998, 16(3): 219 − 221.
    [5]
    李胜, 韩立发, 张小萍, 等. 激光熔覆与氩弧焊熔覆﹑焊条电弧焊熔覆的比较[J]. 热加工工艺, 2011, 40(15): 125 − 126,129. doi: 10.3969/j.issn.1001-3814.2011.15.042

    Li Sheng, Han Lifa, Zhang Xiaoping, et al. Compare on laser cladding and argon arc cladding, covered electrode arc cladding[J]. Hot Working Technology, 2011, 40(15): 125 − 126,129. doi: 10.3969/j.issn.1001-3814.2011.15.042
    [6]
    王金凤, 井子润, 杨伟, 等. 激光熔覆与等离子熔覆的镍基合金熔覆层组织和性能对比[J]. 材料保护, 2020, 53(1): 80 − 83.

    Wang Jinfeng, Jing Zirun, Yang Wei, et al. Effect of laser cladding and plasma cladding on microstructure and properties of nickel-based alloy cladding layer[J]. Materials Protection, 2020, 53(1): 80 − 83.
    [7]
    王子龙, 秦建, 路全彬, 等. 焊接方法对S22053双相钢焊接接头组织和性能的影响[J]. 焊接, 2018(8): 21 − 27.

    Wang Zilong, Qin Jian, Lu Quanbin, et al. Effect of welding methods on microstructure and properties of S22053 welding joints[J]. Welding & Joining, 2018(8): 21 − 27.
    [8]
    Prasad R, Waghmare D T, Kumar K, et al. Effect of overlapping condition on large area NiTi layer deposited on Ti-6Al-4V alloy by TIG cladding technique – Science direct[J]. Surface and Coatings Technology, 2020, 385: 125417. doi: 10.1016/j.surfcoat.2020.125417
    [9]
    徐国建, 柳晋, 刘占起, 等. 一种同轴弧内送丝与弧外送粉TIG电弧增材制造装置: CN111266702A[P]. 2020-06-12.

    Xu Guojian, Liu Jin, Liu Zhanqi, et al. A coaxial in-arc wire feeding and out-arc powder feeding TIG arc additive manufacturing device: CN111266702A[P]. 2020-06-12.
    [10]
    Huang Y, Liu R L, Hao Y Z. Gas pool coupled activating TIG welding method with coupling arc electrode[J]. Chinese Journal of Mechanical Engineering, 2018, 31(6): 169 − 176.
    [11]
    Alcindo F Moreira, Kandice S B Ribeiro, Fábio E Mariani, et al. An initial investigation of tungsten inert gas (TIG) torch as heat source for additive manufacturing (AM) process[J]. Procedia Manufacturing, 2020, 48: 671 − 677. doi: 10.1016/j.promfg.2020.05.159
    [12]
    Jyotsna Dutta Majumdar, Ajeet Kumar, Lin Li. Direct laser cladding of SiC dispersed AISI 316L stainless steel[J]. Tribology International, 2009, 42(5): 750 − 753. doi: 10.1016/j.triboint.2008.10.016
    [13]
    Ding Haohao, Yang Tao, Wang Wenjian, et al. Optimization and wear behaviors of 316L stainless steel laser cladding on rail material[J]. Wear, 2023, 523(7): 204830.
    [14]
    Ji Xiulin, Luo Chanyuan, Sun Yong, et al. Corrosive wear of multi-layer Fe-based coatings laser cladded from amorphous powders[J]. Wear, 2019, 438–439(11): 203113.
    [15]
    Riquelme C, Sánchez de Rojas Candela, Rodrigo P, et al. Influence of process parameters in additive manufacturing of highly reinforced 316L/SiCp composites[J]. Journal of Materials Processing Technology, 2022, 299(1): 117325.
    [16]
    叶超, 侯亮, 陈云, 等. 316L不锈钢激光熔覆宏微观特征优化[J]. 焊接学报, 2023, 44(3): 8 − 16. doi: 10.12073/j.hjxb.20220426001

    Ye Chao, Hou Liang, Chen Yun, et al. Research on optimization of macroscopic and microscopic characteristics of 316L stainless steel by laser cladding[J]. Transactions of the China Welding Institution, 2023, 44(3): 8 − 16. doi: 10.12073/j.hjxb.20220426001
    [17]
    张敏, 王新宝, 王浩军, 等. 激光熔覆TC4/Inconel 625/316L不锈钢梯度材料组织与性能[J]. 焊接学报, 2023, 44(7): 16 − 23. doi: 10.12073/j.hjxb.20220628001

    Zhang Ming, Wang Xinbao, Wang Haojun, et al. Microstructure and mechanical properties of laser clad-ding TC4/Inconel 625/316L stainless steel gradient material[J]. Transactions of the China Welding Institution, 2023, 44(7): 16 − 23. doi: 10.12073/j.hjxb.20220628001
    [18]
    Li Xiaoping, Liu Xiao, Li Runzhou, et al. Microstructure and property research on welded joints of 7xxx aluminum alloy welding wire TIG for 7075 aluminum alloy[J]. China Welding, 2021, 30(4): 58 − 64.
  • Related Articles

    [1]ZHENG Guangzhen, HAN Hongbiao, WANG Rui, ZHANG Peng. Electrode wobble technology of electro-spark deposition based on orthogonal tests[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 43-50, 136. DOI: 10.12073/j.hjxb.20231215001
    [2]WANG Shun, HAN Hongbiao, LI Shikang, LI Mengnan. Analysis of the influence of cylindrical electrode parameters on electro-spark deposition quality based on orthogonal experiment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(7): 37-43. DOI: 10.12073/j.hjxb.20210131002
    [3]WANG Shun, TONG Jinzhong, HAN Hongbiao. An automatic control device of contact force for electro-spark deposition and deposition test[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 42-47. DOI: 10.12073/j.hjxb.20201108001
    [4]HAN Hongbiao, GUO Jingdi, JIAO Wenqing. Discharge mechanism of electro-spark deposition with rotary electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 67-72. DOI: 10.12073/j.hjxb.2019400129
    [5]WANG Yanfang<sup>1</sup>, SI Shuangshuang<sup>2</sup>, SONG Zenjin<sup>1</sup>, SUN Xu<sup>1</sup>, SHI Zhiqiang<sup>1</sup>. Microstructure and tribology behaviors of Zr-based amorphous coating on ZL101 by electro-spark deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 121-124. DOI: 10.12073/j.hjxb.2018390188
    [6]CHU Weishen, LIN Tiesong, HE Peng, WEI Hongmei, DAI Dengfeng. Numerical simulation of stress field on WC-12Co coating by consecutive electro spark deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(2): 71-74.
    [7]WEI Hongmei, CHU Weishen, LIN Tiesong, HE Peng. Numerical simulation of temperature field of WC-12Co coating by monopoles electro spark deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(3): 35-38.
    [8]HAN hongbiao, LI Xiangyang. Digital control of capacitance charge-discharge pulse in electro-spark deposition power supply[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(3): 23-26,70.
    [9]GAO Yuxin, ZHAO Cheng, YI Jian. Analysis on WC-8Co electro-spark deposition coating with powder presetting method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (3): 49-52.
    [10]HAO Jianjun, HUANG Jihua, ZHAO Jianguo, CHEN Zhiqiang. Reactive synthesis TiN reinforced matrix composite coating by electric-spark deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (10): 33-36.

Catalog

    Article views (153) PDF downloads (49) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return