Citation: | HAN Mei, ZHANG Xi, MA Qingjun, WEI Yushun, WEI Chen, WANG Zejun, JIA Yunhai. The effect of trace elements on the microstructure and properties of coarse grain heat affected zone of EH36 ship steel with super large heat input[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 47-53. DOI: 10.12073/j.hjxb.20230301001 |
The influence of Al, Mg, and Ti element content on the microstructure and properties of the coarse grain zone in the heat affected zone of EH36 high-strength ship steel during large heat input welding was studied through welding thermal simulation. The relationship between Al, Mg, and Ti element content and oxide type, size, quantity, and coarse grain zone phase transformation in the base material was revealed using Thermo-Calc thermodynamic calculation combined with SEM and EDS testing. The results showed that Al2O3 couldn`t induce the transformation of acicular ferrite. When the mass percent of Al element was below 0.005%, Ti, Mg or their composite oxides could be formed in the steel, which could promote the transformation of acicular ferrite in the coarse grain area. When Ti and Mg were added together, and the mass percent of Mg element decreased from 0.0042% to 0.0013%, the oxide type changed from MgO to Mg2TiO4, the number of oxides in 20 fields of view increased from 408 to 503, the average diameter of the oxide reduced from1.37 μm to 1.10 μm. The specific surface area of non-uniform nucleation was significantly increased, the formation of grain boundary ferrite was suppressed, and the impact energy of the thermal simulation sample at −20 ℃ in the coarse grain zone was increased from 43 J to 127 J at t8/5=300 s.
[1] |
Gook S, Midik A, Biegler M, et al. Joining 30 mm thick shipbuilding steel plates EH36 using a process combination of hybrid laser arc welding and submerged arc welding[J]. Journal of Manufacturing and Materials Processing, 2022, 6(4): 84. doi: 10.3390/jmmp6040084
|
[2] |
Pan X Q, Yang J, Zhang Y H. Microstructure and fracture characteristics of heat-affected zone in shipbuilding steel plates with mg deoxidation after high heat input welding[J]. Steel Research International, 2021, 92(11): 2100376 − 2100390. doi: 10.1002/srin.202100376
|
[3] |
陈家本, 郑惠锦, 朱若凡, 等. 中国船舶焊接技术进展[J]. 焊接, 2007(5): 1 − 6.
Chen Jiaben, Zheng Huijin, Zhu Ruofan, et al. Development of China shipbuilding welding technology[J]. Welding & Joining, 2007(5): 1 − 6.
|
[4] |
余圣甫, 雷毅, 黄安国, 等. 氧化物冶金技术及其应用[J]. 材料导报, 2004, 18(8): 50 − 52.
Yu Shengfu, Lei Yi, Huang Anguo, et al. Oxides metallurgy technology and its application[J]. Materials Reports, 2004, 18(8): 50 − 52.
|
[5] |
Bhadeshia H, Edmanda D V. The mechanism of bainite formation in steels[J]. Acta Metallurgica, 1980, 28(9): 1265 − 1273. doi: 10.1016/0001-6160(80)90082-6
|
[6] |
刘洪波, 李建新, 吝章国, 等. 大热输入焊接用EH40船板钢焊接热影响区组织转变与力学性能[J]. 焊接, 2020(11): 21 − 27.
Liu Hongbo, Li Jianxin, Lin Zhangguo, et al. Microstructure transformation and mechanical properties of EH40 shipbuilding plate steel for high heat input welding application[J]. Welding & Joining, 2020(11): 21 − 27.
|
[7] |
Kojma A, Hoshino M. Super high HAZ toughness technology with fine microstructure imparted by fine particles[J]. Nippon Steel Technical Report, 2004, 380: 2 − 5.
|
[8] |
Ichimiya K, Sumi H, Hirai T. 460 MPa-yield-strength-class steel plate with JFE EWEL® technology for large-heat-input welding[J]. JFE Technical Report, 2008(11): 7 − 12.
|
[9] |
Koseki T, Thewlis G. Inclusion assisted microstructure control in C-Mn and low alloy steel welds[J]. Material Science and Technology, 2005, 21(8): 867 − 879. doi: 10.1179/174328405X51703
|
[10] |
张敏, 陈阳阳, 刘明志, 等. 超低碳贝氏体钢埋弧焊焊接接头韧化机理分析[J]. 焊接学报, 2016, 37(6): 45 − 49.
Zhang Min, Chen Yangyang, Liu Mingzhi, et al. Toughness mechanism analysis of submerged arc welding joints of ultra-low carbon bainitic steel[J]. Transactions of the China Welding Institution, 2016, 37(6): 45 − 49.
|
[11] |
Wu Y W, Yuan X B, Kaldre I, et al. TiO2-assisted microstructural variations in the weld metal of EH36 shipbuilding steel subject to high heat input submerged arc welding[J]. Metallurgical and Materials Transactions B, 2023, 54(1): 50 − 55. doi: 10.1007/s11663-022-02697-x
|
[12] |
祝凯. Mg处理冶炼工艺对船板钢母材和焊接热影响区影响的研究[D]. 上海: 复旦大学, 2011.
ZhuKai. The influences of Mg treatment on the base metal and welding heat affected zone in ship plate steel[D]. Shanghai: Fudan University, 2011.
|
[13] |
Xie X, Zhong M, Zhao T, et al. Probing microstructural evolution in weld metals subjected to varied CaF2-TiO2 flux cored wires under high heat input electro-gas welding[J]. Journal of Iron and Steel Research International, 2022, 30(1): 150 − 157.
|
[14] |
孙占, 黄继华, 张华, 等. 微合金EH40型船板钢大热输入焊接接头组织和力学性能[J]. 焊接学报, 2008, 29(3): 41 − 44. doi: 10.3321/j.issn:0253-360X.2008.03.011
Sun Zhan, Huang Jihua, Zhang Hua, et al. Microstructures and mechanical properties of joints of microalloyed EH40 ship steel plate with high heat-input welding[J]. Transactions of the China Welding Institution, 2008, 29(3): 41 − 44. doi: 10.3321/j.issn:0253-360X.2008.03.011
|
[15] |
陈茂爱, 武传松, 王建国, 等. 含Ti微合金钢中的第二相粒子对焊接粗晶热影响区组织及韧性的影响[J]. 焊接学报, 2002, 23(3): 37 − 40.
Chen Maoai, Wu Chuansong, Wang Jianguo, et al. Effect of second phase particle on microstructure and toughness of CGHAZ in HSLA[J]. Transactions of the China Welding Institution, 2002, 23(3): 37 − 40.
|
[16] |
杨宇龙, 贾潇, 朱伏先, 等. 大线能量焊接用钢粗晶热影响区针状铁素体形成过程控制技术的研究进展[J]. 材料导报, 2022, 36(5): 145 − 155.
Yang Yulong, Jia Xiao, Zhu Fuxian, et al. Research progeress on control technology of acicular ferrite in CGHAZ for large heat-input welding steels[J]. Materials Reports, 2022, 36(5): 145 − 155.
|
[17] |
Zhang J, Coetsee T, Dong H B, et al. Element transfer behaviors of fused CaF2-SiO2-MnO fluxes under high heat input submerged arc welding[J]. Metallurgical and Materials Transactions, 2020, 51B(3): 885 − 890.
|
[18] |
Yang Y L, J X, Ma Y X, et al. Effect of Nb on microstructure and mechanical properties between base metal and high heat input coarse-grain HAZ in a Ti-deoxidized low carbon high strength steel[J]. Journal of Materials Research and Technology, 2022, 18: 2399 − 2412. doi: 10.1016/j.jmrt.2022.03.150
|
[19] |
朱立光, 张庆军. 基于氧化物冶金的微合金化研究[J]. 工程科学学报, 2022, 44(9): 1529 − 1537. doi: 10.3321/j.issn.1001-053X.2022.9.bjkjdxxb202209007
Zhu Liguang, Zhang Qingjun. Fundamental research of the microalloying theory based on oxide metalluigy technology[J]. Chinese Journal of Engineering, 2022, 44(9): 1529 − 1537. doi: 10.3321/j.issn.1001-053X.2022.9.bjkjdxxb202209007
|
[20] |
Song F Y, Zhou L H, Liu S Y, et al. Effects of Ti, B and O on weld structure and impact toughness of high heat input flux cored wire[J]. Transactions of the Indian Institute of Metals, 2022, 75(12): 3175 − 3183. doi: 10.1007/s12666-022-02704-4
|
[21] |
Yamamoto K, Matsuda S, Haze T. A newly developed Ti-oxide bearing steel having high HAZ toughness[J]. ASTM Special Technical Publication, 1989, 1042: 266 − 284.
|
[22] |
Kim H S, Chang C H, Lee H G. Evolution of inclusions and resultant microstructural change with Mg addition in Mn/Si/Ti deoxidized steels[J]. Scripta Materialia, 2005, 53(11): 1253 − 1258. doi: 10.1016/j.scriptamat.2005.08.001
|
[23] |
Yamaguch J, Takemura N, Furuhara T, et al. Crystallography of ferrite nucleated at (MnS + V(C, N)) complex Precipitate in austenite[C]//Current advances in materials and processes: report of the ISIJ meeting, Nagoya, ISIJ, 1998: 1128-1128.
|
[1] | FENG Yulan, WU Zhisheng, SUN Zhiyu. Numerical simulation of the influence of thickness of cladding material on stress and strain of welded joint of stainless steel composite plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 73-82. DOI: 10.12073/j.hjxb.20230606001 |
[2] | JIANG Shuying, CAI Chang, ZHAO Ming, HUANG Wanqun. Microstructure and properties of Q235 steel/6061 aluminum alloy resistance spot welding joint based on high-entropy alloy interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 71-78. DOI: 10.12073/j.hjxb.20220826002 |
[3] | GUI Xiaoyan, ZHANG Yanxi, YOU Deyong, GAO Xiangdong. Numerical simulation and test for influence of laser arc hybrid welding sequence on 304 stainless steel T-joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 34-39. DOI: 10.12073/j.hjxb.20210324005 |
[4] | ZHOU Li, ZHANG Renxiao, SHU Fengyuan, HUANG Yongxian, FENG Jicai. Microstructure and mechanical properties of friction stir welded joint of Q235 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 80-84. DOI: 10.12073/j.hjxb.2019400076 |
[5] | HUANG Bensheng, CHEN Quan, YANG Jiang, LIU Ge, YI Hongyu. Numerical simulation of welding residual stress and distortion in Q345/316L dissimilar steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 138-144. DOI: 10.12073/j.hjxb.2019400057 |
[6] | WANG Houqin, ZHANG Binggang, WANG Ting, FENG Jicai. Numerical simulation of molten pool flow behavior in stationary electron beam welding of 304 stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 57-61. |
[7] | SUN Fangfang, LI Mengsheng, WANG Yang, ZHAO Ying. Numerical simulation on 201 stainless steel spot welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (2): 21-24. |
[8] | WANG Jianmin, ZHU Xi, LIU Runquan. Three dimensional numerical simulation for explosive welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (5): 109-112. |
[9] | Liu Renpei, Dong Zujue, Wei Yanhong. Numerical Simulation Model of Stress-strain Distributions for Weld Metal Solidification Cracking in Stainless Steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (4): 238-243. |
[10] | Wei Yanhong, Liu Renpei, Dong Zujue. Numerical Simulation of Temperature Fields for Weld Metal Solidification Cracking in Stainless Steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (3): 199-204. |
1. |
侯东旭,殷子强,陈培敦,夏佃秀,王守仁. 不同活化剂对超薄板脉冲激光焊焊接接头组织及性能的影响. 电焊机. 2025(03): 48-57 .
![]() | |
2. |
郭广飞,任明皓,姜恒,吴锴,汪志福,章小浒. 热输入对低温高锰钢焊接接头组织和性能的影响. 机械工程材料. 2025(03): 94-99 .
![]() | |
3. |
邬亲丹,林毅,官忠波,杨飞,朱宇霆. 回火对E101T1-K3C熔敷金属显微组织和力学性能的影响. 机械制造文摘(焊接分册). 2024(01): 1-5+11 .
![]() | |
4. |
曾道平,郑韶先,安同邦,代海洋,马成勇. 440 MPa级高强钢焊条熔敷金属组织与低温冲击韧性研究. 焊接学报. 2024(03): 120-128+136 .
![]() | |
5. |
代海洋,贺建芸,付俊杰,杜立强,魏靖柠,左月,安同邦. 热输入对440 MPa级HSLA钢埋弧焊对接接头组织及性能的影响. 电焊机. 2024(05): 52-59 .
![]() | |
6. |
汤忖江,安同邦,彭云,林纯丞,马成勇,刘旭明. 焊接热输入对690 MPa级HSLA钢焊缝金属组织与力学性能的影响. 焊接学报. 2024(09): 110-119 .
![]() |