Advanced Search
GUI Xiaoyan, ZHANG Yanxi, YOU Deyong, GAO Xiangdong. Numerical simulation and test for influence of laser arc hybrid welding sequence on 304 stainless steel T-joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 34-39. DOI: 10.12073/j.hjxb.20210324005
Citation: GUI Xiaoyan, ZHANG Yanxi, YOU Deyong, GAO Xiangdong. Numerical simulation and test for influence of laser arc hybrid welding sequence on 304 stainless steel T-joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 34-39. DOI: 10.12073/j.hjxb.20210324005

Numerical simulation and test for influence of laser arc hybrid welding sequence on 304 stainless steel T-joint

More Information
  • Received Date: March 23, 2021
  • Available Online: December 22, 2021
  • The three-dimensional finite element model of 304 stainless steel T-joint was established to study the influence of welding sequence on thermal deformation and residual stress of T-joint during laser-arc hybrid welding. A composite heat source model combining Gaussian surface heat source and 3D Gaussian body heat source was used to simulate the laser and arc hybrid heat sources. The reliability of numerical simulation was verified by laser-arc hybrid build up welding test of 304 stainless steel. Numerical simulation results of weld section pool morphology are in good agreement with the actual welding experimental results, which indicates that the established heat source model can effectively simulate the coupling effect of laser-arc hybrid heat sources. The temperature field, residual stress and thermal deformation of 304 stainless steel T-joint under different welding sequence were analyzed. Experimental results show that the welding sequence has influence on the residual stress and thermal deformation of T-joint in laser-arc hybrid welding. In comparison of the residual stress and thermal deformation under different welding sequences, it is found that the sequential welding can effectively reduce the welding residual stress, and the thermal deformation of simultaneous reverse welding is minimum. Comprehensive analysis shows that the effect of sequence reverse welding for 304 stainless steel T-joint is the best.
  • Han T, Gu S W, Xu L, et al. Study on stress and deformation of keyhole gas tungsten arc-welded joints[J]. China Welding, 2020, 29(1): 21 − 29.
    许欣欣, 梁晓光, 杨瑞生, 等. 焊接残余应力对2219铝合金熔焊接头承载能力的影响[J]. 焊接学报, 2020, 41(10): 17 − 22. doi: 10.12073/j.hjxb.20200403004

    Xu Xinxin, Liang Xiaoguang, Yang Ruisheng, et al. Effect of welding residual stress on bearing capacity of fusion welded joint of 2219 aluminum alloy[J]. Transactions of the China Welding Institution, 2020, 41(10): 17 − 22. doi: 10.12073/j.hjxb.20200403004
    Liu F Y, Tan C W, Gong X T, et al. A comparative study on microstructure and mechanical properties of HG785D steel joint produced by hybrid laser-MAG welding and laser welding[J]. Optics and Laser Technology, 2020, 128: 106247. doi: 10.1016/j.optlastec.2020.106247
    Mondal A K, Biswas P, Bag S. Prediction of welding sequence induced thermal history and residual stresses and their effect on welding distortion[J]. Welding in the World, 2017, 61(4): 711 − 721. doi: 10.1007/s40194-017-0468-3
    Shadkam S, Ranjbarnodeh E, Iranmanesh M. Effect of sequence and stiffener shape on welding distortion of stiffened panel[J]. Journal of Constructional Steel Research, 2018, 149: 41 − 52. doi: 10.1016/j.jcsr.2018.07.010
    Chen Z, Chen Z C, Shenoi R A. Influence of welding sequence on welding deformation and residual stress of a stiffened plate structure-science direct[J]. Ocean Engineering, 2015, 106: 271 − 280. doi: 10.1016/j.oceaneng.2015.07.013
    Han S, Ahn J, Na S. A study on ray tracing method for CFD simulations of laser keyhole welding: progressive search method[J]. Welding in the World, 2016, 60(2): 247 − 258. doi: 10.1007/s40194-015-0289-1
    Liang W, Deng D. Influences of heat input, welding sequence and external restraint on twisting distortion in an asymmetrical curved stiffened panel[J]. Advances in Engineering Software, 2018, 115: 439 − 451. doi: 10.1016/j.advengsoft.2017.11.002
    Yi J, Zhang J M, Cao S F, et al. Effect of welding sequence on residual stress and deformation of 6061-T6 aluminium alloy automobile component[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(2): 287 − 295. doi: 10.1016/S1003-6326(19)64938-1
    Gao X D, Wang L, You D Y, et al. Synchronized monitoring of droplet transition and keyhole bottom in high power laser-mag hybrid welding process[J]. Sensors Journal, IEEE, 2019, 19(9): 3553 − 3563. doi: 10.1109/JSEN.2019.2893120
    严春妍, 易思, 张浩, 等. S355钢激光-MIG复合焊接头显微组织和残余应力[J]. 焊接学报, 2020, 41(6): 12 − 18.

    Yan Chunyan, Yi Si, Zhang Hao, et al. Investigation of microstructure and stress in laser-MIG hybrid welded S355 steel plates[J]. Transactions of the China Welding Institution, 2020, 41(6): 12 − 18.
    Zhu Z W, Ma X Q, Wang C M, et al. Modification of droplet morphology and arc oscillation by magnetic field in laser-MIG hybrid welding[J]. Optics and Lasers in Engineering, 2020, 131: 106138. doi: 10.1016/j.optlaseng.2020.106138
    吴向阳, 徐剑侠, 高学松, 等. 激光-MIG复合焊接热过程与熔池流场的数值分析[J]. 中国激光, 2019, 46(9): 91 − 102.

    Wu Xiangyang, Xu Jianxia, Gao Xuesong, et al. Numerical simulation of thermal process and fluid flow field in Laser-MIG hybrid weld pools[J]. Chinese Journal of Lasers, 2019, 46(9): 91 − 102.
    Zhou S J, Bu H C, Gao Q Y, et al. Effect of power distribution on the temperature evolution in laser-MIG hybrid welding for Q235 steel[J]. Modern Physics Letters B, 2019(4): 1950405.
    Gao X D, Wang L, Chen Z Q, et al. Process stability analysis and weld formation evaluation during disk laser-mag hybrid welding[J]. Optics and Lasers in Engineering, 2020, 124(1): 105835.1 − 105835.13.
    高向东, 冯燕柱, 桂晓燕, 等. 激光入射角影响焊接熔池匙孔瞬态行为数值模拟[J]. 机械工程学报, 2020, 56(22): 82 − 89. doi: 10.3901/JME.2020.22.082

    Gao Xiangdong, Feng Yanzhu, Gui Xiaoyan, et al. Numerical simulation of effects of laser incident angle on transient behaviors of molten pool and keyhole during laser welding[J]. Journal of Mechanical Engineering, 2020, 56(22): 82 − 89. doi: 10.3901/JME.2020.22.082
    Hou Z L, Liu L M, Lü X Z, et al. Numerical simulation for pulsed laser–gas tungsten arc hybrid welding of magnesium alloy[J]. Journal of Iron and Steel Research International, 2018, 25: 995 − 1002. doi: 10.1007/s42243-018-0122-3
    Zhan X H, Liu Y, Ou W M, et al. The numerical and experimental investigation of the multi-layer laser-MIG hybrid welding for Fe36Ni Invar alloy[J]. Journal of Materials Engineering and Performance, 2015, 24(12): 4948 − 4957. doi: 10.1007/s11665-015-1808-3
    Fu G, Lourenco M I, Duan M L, et al. Influence of the welding sequence on residual stress and distortion of fillet welded structures[J]. Marine Structures, 2016, 46: 30 − 55. doi: 10.1016/j.marstruc.2015.12.001
  • Cited by

    Periodical cited type(9)

    1. 李延民,尤浩冰,赵树森. 6061-T6铝合金中厚板-节点套多层多道焊数值模拟. 材料科学与工艺. 2024(02): 97-104 .
    2. 陈勇,徐育烺,杨海波,赵先锐,张涛,王业方. 304不锈钢薄壁管件纵缝焊接接头残余应力数值模拟研究. 精密成形工程. 2023(03): 155-163 .
    3. 熊晓莉,卢娅囡,卢梦丹,管欣旺,李璐. Q460高强钢焊接T形截面纵向残余应力分布. 焊接学报. 2023(08): 63-73+133 . 本站查看
    4. 李岩,刘琪,李艳彪,张艳峰,田孟良,吴志生. 薄壁GH3536尾喷管组焊变形控制工艺优化仿真. 稀有金属材料与工程. 2023(08): 2775-2782 .
    5. 何奇,李时春,谷金良,肖罡,黄浩. A6061铝合金脉冲MIG焊T型接头应力场有限元模拟. 机械工程材料. 2023(09): 70-75+81 .
    6. 苗玉刚,王林,王子然,卓振坚,林春香,谭国平,谢祖靠. DH36高强度船板钢对接焊残余应力与变形数值模拟与试验分析. 武汉理工大学学报. 2023(10): 104-111 .
    7. 王宇超,朱明亮,范曼杰,霍鑫,轩福贞. 多层多道焊接转子工艺模拟及参数优化. 机械强度. 2023(06): 1380-1386 .
    8. 杨海波,陈勇,徐育烺,赵先锐,王业方,张涛. 304不锈钢管TIG焊接头凝固行为及热力耦合研究. 精密成形工程. 2023(12): 173-181 .
    9. 芦凤桂,邓德安,王亚琦,邵晨东. 数值模拟技术在激光焊接过程中的应用及发展. 焊接学报. 2022(08): 87-94+119 . 本站查看

    Other cited types(2)

Catalog

    Article views (315) PDF downloads (48) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return