Advanced Search
JIANG Shuying, CAI Chang, ZHAO Ming, HUANG Wanqun. Microstructure and properties of Q235 steel/6061 aluminum alloy resistance spot welding joint based on high-entropy alloy interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 71-78. DOI: 10.12073/j.hjxb.20220826002
Citation: JIANG Shuying, CAI Chang, ZHAO Ming, HUANG Wanqun. Microstructure and properties of Q235 steel/6061 aluminum alloy resistance spot welding joint based on high-entropy alloy interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 71-78. DOI: 10.12073/j.hjxb.20220826002

Microstructure and properties of Q235 steel/6061 aluminum alloy resistance spot welding joint based on high-entropy alloy interlayer

More Information
  • Received Date: August 25, 2022
  • Available Online: June 14, 2023
  • The composite structure formed by steel and aluminum has a combination advantages of aluminums such as low density, high thermal conductivity, and excellent corrosion resistance, and hightlights of steels like high strength, toughness and low cost. The structure gives full play to the high performance of both materials and exhibits superior economic efficiency. However, it is difficult to obtain a reliable welding joint between the two materials due to the giant difference in the physical and chemical properties of them, which tend to generate brittle intermetallic compounds in the joint. In this paper, Fe0.2CoCrMnNiAl0.2 high-entropy alloy was applied as an interlayer to weld the steel/aluminum metals, utilizing the super solid solubility of the high-entropy alloy as a boost to the welding quality. The results show that when the interlayer was used, semi-elliptical nuggets showed up on the steel and aluminum sides of the joint section. The joint was neatly formed and without obvious macroscopic cracks, pores or other welding defects. The phase structures of the two nuggets were face-centered cubic solid solutions. The maximum tensile shear force of the joint reached 1913 N, which was 130% higher than that of the steel/aluminum direct resistance spot welded joint. Fracture occured at the aluminum alloy nugget, which was torn off by the tensile shear force and left on the surface of the high-entropy alloy, exhibiting a “button-like” fracture.
  • Sun J, Yan Q, Gao W, et al. Investigation of laser welding on butt joints of Al/steel dissimilar materials[J]. Materials & Design, 2015, 83: 120 − 128.
    Shi D, Watanabe K. Multi-objective optimization design of multi-material (MM) vehicle beam with aluminum extrusion and high strength steel[J]. Transactions of Society of Automotive Engineers of Japan, 2019, 50(2): 417 − 423.
    Wan Z X, Wang H P, Chen N N, et al. Characterization of intermetallic compound at the interfaces of Al - steel resistance spot welds[J]. Journal of Materials Processing Technology, 2017, 242: 12 − 23. doi: 10.1016/j.jmatprotec.2016.11.017
    蒋淑英, 李世春. Al/Fe液-固界面扩散反应层生长动力学分析[J]. 材料工程, 2015, 43(5): 62 − 66. doi: 10.11868/j.issn.1001-4381.2015.05.011

    Jiang Shuying, Li Shichun. Growth kinetics analysis on diffusion reaction layer in Al/Fe liquid-solid interface[J]. Journal of Materials Engineering, 2015, 43(5): 62 − 66. doi: 10.11868/j.issn.1001-4381.2015.05.011
    邱然锋, 李久勇, 贺玉刚, 等. 铝合金/低碳钢点焊界面反应物生长机制[J]. 中国有色金属学报, 2017, 27(6): 1176 − 1181. doi: 10.19476/j.ysxb.1004.0609.2017.06.014

    Qiu Ranfeng, Li Jiuyong, He Yugang, et al. Growth mechanism of reactants at spot welding interface between aluminum alloy and low carbon steel[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(6): 1176 − 1181. doi: 10.19476/j.ysxb.1004.0609.2017.06.014
    王楠楠, 邱然锋, 石红信. 基于中间层的铝合金/钢电阻点焊[J]. 材料热处理学报, 2019, 40(1): 155 − 160. doi: 10.13289/j.issn.1009-6264.2018-0325

    Wang Nannan, Qiu Ranfeng, Shi Hongxin. Resistance spot welding of aluminum alloy/steel via an insert[J]. Transactions of Materials and Heat Treatment, 2019, 40(1): 155 − 160. doi: 10.13289/j.issn.1009-6264.2018-0325
    Arghavani M R, Movahedi M, Kokabi A H. Role of zinc layer in resistance spot welding of aluminum to steel[J]. Materials & Design, 2016, 102(15): 106 − 114.
    Zheng Q, Feng X, Shen Y, et al. Dissimilar friction stir welding of 6061 Al to 316 stainless steel using Zn as a filler metal[J]. Journal of Alloys and Compounds, 2016, 686: 693 − 701. doi: 10.1016/j.jallcom.2016.06.092
    Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014, 61(4): 1 − 93.
    Joseph J, Stanford N, Hodgson P, et al. Understanding the mechanical behaviour and the large strength/ductility differences between FCC and BCC AlxCoCrFeNi high entropy alloys[J]. Journal of Alloys and Compounds, 2017, 726: 885 − 895.
    Jiang S Y, Lin Z F, Xu H M, et al. Studies on the microstructure and properties of AlxCoCrFeNiTi1-x high entropy alloys[J]. Journal of Alloys and Compounds, 2018, 741: 826 − 833. doi: 10.1016/j.jallcom.2018.01.247
    Liu D, Wang J, Xu M, et al. Evaluation of dissimilar metal joining of aluminum alloy to stainless steel using the filler metals with a high-entropy design[J]. Journal of Manufacturing Processes, 2020, 58: 500 − 509. doi: 10.1016/j.jmapro.2020.08.031
    Khorrami M S, Azhari H, Nademi A, et al. Dissimilar resistance spot welding of 6061-T6 aluminum alloy/St-12 carbon steel using a high entropy alloy interlayer[J]. Intermetallics, 2020, 124: 106876. doi: 10.1016/j.intermet.2020.106876
    郭嘉宝. 应用高熵效应电阻点焊钛/钢板的研究[D]. 西安: 西安理工大学, 2015.

    Guo Jiabao. Research on resistance spot welding of titanium/steel plate using high entropy effect [D]. Xi'an: Xi'an University of Technology, 2015.
    裴龙基, 胡志月, 瞿龙, 等. TA2/Co13Cr28Cu31Ni28/Q235脉冲TIG焊接头组织与性能[J]. 焊接学报, 2021, 42(11): 90 − 96. doi: 10.12073/j.hjxb.20210427002

    Pei Longji, Hu Zhiyue, Qu Long, et al. Microstructure and properties of TA2/Co13Cr28Cu31Ni28/Q235 pulsed TIG weld joint[J]. Transactions of the China Welding Institution, 2021, 42(11): 90 − 96. doi: 10.12073/j.hjxb.20210427002
    翟秋亚, 刘帅宾, 杨全虎, 等. Ta1/Ta8Ni30Cr20Cu42/0Cr18Ni9储能焊接头组织与性能[J]. 焊接学报, 2020, 41(10): 60 − 64,86. doi: 10.12073/j.hjxb.20200822001

    Zhai Qiuya, Liu Shuaibin, Yang Quanhu, et al. Microstructure and properties of Ta1/Ta8Ni30Cr20Cu42/0Cr18Ni9 energy storage welding joint[J]. Transactions of the China Welding Institution, 2020, 41(10): 60 − 64,86. doi: 10.12073/j.hjxb.20200822001
  • Cited by

    Periodical cited type(4)

    1. 陆煜,赵健,石磊,白玉,王英,曾浩林. K418B与1Cr11Ni2W2MoV电子束焊缝组织及性能分析. 兵器材料科学与工程. 2024(05): 45-51 .
    2. 蔡平,殷雄,余明俊,漆启华,姚道金. 结合响应面和改进粒子群对厂房烟尘浓度控制. 重庆理工大学学报(自然科学). 2024(12): 224-231 .
    3. 张楷,高辉,林渊浩,邵明启. 基于RSM和NSGA-Ⅱ算法的同轴送粉氩弧熔覆工艺参数分析. 焊接学报. 2024(12): 106-116 . 本站查看
    4. 解天虎. 焊接工艺在机械维修中的应用及优化措施. 造纸装备及材料. 2023(06): 116-118 .

    Other cited types(4)

Catalog

    Article views (268) PDF downloads (58) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return