Advanced Search
SHI Yingjie, CUI Zeqin, DING Zhengxiang, HAO Xiaohu, WANG Wenxian, LI Weiguo. Microstructure and properties of aluminum/copper blue-red hybrid laser welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 54-60. DOI: 10.12073/j.hjxb.20230109001
Citation: SHI Yingjie, CUI Zeqin, DING Zhengxiang, HAO Xiaohu, WANG Wenxian, LI Weiguo. Microstructure and properties of aluminum/copper blue-red hybrid laser welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 54-60. DOI: 10.12073/j.hjxb.20230109001

Microstructure and properties of aluminum/copper blue-red hybrid laser welded joint

More Information
  • Received Date: January 08, 2023
  • Available Online: October 31, 2023
  • In order to realize efficient and reliable welding of power battery, 1050 aluminum/T2 copper lap welding was carried out by using blue-red laser heat source. The effects of laser power on the microstructure, phase distribution mechanical properties and electrical conductivity of the joint were investigated. The results show that the weld surface of Al/Cu lap joint is smooth and the section is “T” shape. When PB (Blue laser power) remains 300 W, PR(Infrared laser power) increases in 700 W ~ 1400 W, the copper side penetration depth increases from 60 μm to 1000 μm, achieving a good metallurgical bonding with PR = 800 W. The weld microstructure is composed of Al solid solution, Al-Cu eutectic alloy and Al2Cu intermetallic compound phases. With the increase of laser power, Al4Cu9 phases appear locally in the weld, and AlCu, Al4Cu9 and AlCu3 phases appear at the edge. When PR = 800 W, the weld strength reaches the maximum of 108.6 MPa, and the contact resistance reaches the minimum of 94 μΩ. The crack starts from the junction of two plates region (Al2Cu) and extends along the weld edge from the outer Al2Cu region to the junction of Al solid solution and Al-Cu eutectic alloy at the bottom. The fracture form is cleavage fracture.

  • [1]
    Das N, Barain, Masters N, et al. Comparison of tab-to-busbar ultrasonic joints for electric vehicle li-lon battery applications[J]. World Electric Vehicle Journal, 2019, 10(3): 55 − 68. doi: 10.3390/wevj10030055
    [2]
    Thorgeirsson A T, Vaillant M, Scheubner S, et al. Evaluating system architectures for driving range estimation and charge planning for electric vehicles[J]. Software-Practice & Experience, 2021, 51(1): 72 − 90.
    [3]
    Lee S S, Kim T H, Hu S J, et al. Characterization of joint quality in ultrasonic welding of battery tabs[J]. Journal of Manufacturing Science and Engineering, 2013, 135(2): 249 − 261.
    [4]
    Kah P, Vimalraj C, Martikainen J, et al. Factors influencing Al-Cu weld properties by intermetallic compound formation[J]. International Journal of Mechanical and Materials Engineering, 2015, 10(1): 10 − 23. doi: 10.1186/s40712-015-0037-8
    [5]
    邓呈敏, 程东海, 张华, 等. 焊丝成分对铝/铜激光熔钎焊接头组织和性能的影响[J]. 焊接学报, 2022, 43(1): 16 − 21.

    Deng Chengmin, Cheng Donghai, Zhang Hua, et al. Effect of welding wire composition on microstucture and properties on Al/Cu laser welding-brazing joints[J]. Transactions of the China Welding Institution, 2022, 43(1): 16 − 21.
    [6]
    Pérez Z E, Ascari A, Dimatteo V, et al. Laser dissimilar welding of copper and steel thin sheets for battery production[J]. Journal of Laser Applications, 2021, 33(1): 012016. doi: 10.2351/7.0000309
    [7]
    Braunovic M. Reliability of power connections[J]. Journal of Zhejiang University-Science A, 2007, 8: 343 − 356. doi: 10.1631/jzus.2007.A0343
    [8]
    Chen X M, Wang X N, Liu Z G, et al. Effect of Cu content on microstructure transformation and mechanical properties of Fe-Al dissimilar laser welded joints[J]. Optics & Laser Technology, 2020, 126: 106078. doi: 10.1016/j.optlastec.2020.106078
    [9]
    Trinh L N, Lee D. The characteristics of laser welding of a thin aluminum tab and steel battery case for lithium-ion battery[J]. Metals, 2020, 10(6): 842 − 856. doi: 10.3390/met10060842
    [10]
    Amirhossein S, Naveed I. A review on dissimilar laser welding of steel-copper, steel-aluminum, aluminum-copper, and steel-nickel for electric vehicle battery manufacturing[J]. Optics & Laser Technology, 2021, 146: 107595.
    [11]
    Schmalen P, Plapper P. Evaluation of laser braze-welded dissimilar Al-Cu joints[J]. Physics Procedia, 2016, 83: 506 − 514. doi: 10.1016/j.phpro.2016.08.052
    [12]
    Yan S, Shi Y. Influence of laser power on microstructure and mechanical property of laser-welded Al/Cu dissimilar lap joints[J]. Journal of Manufacturing Processes, 2019, 45: 312 − 321. doi: 10.1016/j.jmapro.2019.07.009
    [13]
    Solchenbach T, Plapper P, Cai W. Electrical performance of laser braze-welded aluminum-copper interconnects[J]. Journal of Manufacturing Processes, 2014, 16(2): 183 − 189. doi: 10.1016/j.jmapro.2013.12.002
    [14]
    Lee S J, Nakamura H, Kawahito Y, et al. Effect of welding speed on microstructural and mechanical properties of laser lap weld joints in dissimilar Al and Cu sheets[J]. Science and Technology of Welding and Joining, 2014, 19(2): 111 − 118. doi: 10.1179/1362171813Y.0000000168
    [15]
    Zuo D, Hu S, Shen J, et al. Intermediate layer characterization and fracture behavior of laser-welded copper/aluminum metal joints[J]. Materials & Design, 2014, 58: 357 − 362.
    [16]
    Dimatteo V, Ascari A, Liverani E, et al. Experimental investigation on the effect of spot diameter on continuous-wave laser welding of copper and aluminum thin sheets for battery manufacturing[J]. Optics & Laser Technology, 2022, 145: 107495.
    [17]
    Saariluoma H, Piiroinen A, Unt A, et al. Overview of optical digital measuring challenges and technologies in laser welded components in EV battery module design and manufacturing[J]. Batteries, 2020, 6(3): 47 − 62. doi: 10.3390/batteries6030047
    [18]
    Haubold M, Ganser A, Eder T, et al. Laser welding of copper using a high power disc laser at green wavelength[J]. Procedia CIRP, 2018, 74: 446 − 449. doi: 10.1016/j.procir.2018.08.161
    [19]
    Hess A, Schuster R, Heider A, et al. Continuous wave laser welding of copper with combined beams at wavelengths of 1030nm and of 515nm[J]. Physics Procedia, 2011, 12: 88 − 94. doi: 10.1016/j.phpro.2011.03.012
    [20]
    Das A, Fritz R, Finuf M, et al. Blue laser welding of multi-layered AISI 316L stainless steel micro-foils[J]. Optics & Laser Technology, 2020, 132: 106498.
    [21]
    Kumar N, Masters I, Das A. In-depth evaluation of laser welded similar and dissimilar material tab-to-busbar electrical interconnects for electric vehicle battery pack[J]. Journal of Manufacturing Processes, 2021, 70: 78 − 96. doi: 10.1016/j.jmapro.2021.08.025
  • Related Articles

    [1]WU Kangwei, CHEN Yi, CHENG Guowen, LIU Qiang, LIN Tiesong, HUANG Yongde. Impact of copper-coated CNT content on the fatigue resistance of copper-based composite films[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(12): 99-105. DOI: 10.12073/j.hjxb.20230906003
    [2]HUANG Yongde, PENG Peng, GUO Wei, ZHOU Xingwen, CHENG Guowen, LIU Qiang. Current status and prospect of preparation of nano-copper based flexible conductive films[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(11): 147-156. DOI: 10.12073/j.hjxb.20220709002
    [3]ZHANG Lingyun, MA Honghao, SHEN Zhaowu, ZHOU Guoan. Micro-structure and mechanical properties of explosively welded steel/Cu pipes and Al/Cu pipe/rod via the Russian-dolls-like experimental arrangement[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(5): 1-6. DOI: 10.12073/j.hjxb.20201009003
    [4]SUN Guoji, SUN Qin, YANG Wanchun, XU Hongbo, LI Mingyu. Sintering performance analysis of conductive silver paste on aluminum alloy surface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 38-43, 64. DOI: 10.12073/j.hjxb.20201005002
    [5]LI Huan, XU Guangpei, ZHANG Yuhui, WU Sheng, WANG Fei. Correlation between microstructure and properties of 2219/5A06 dissimilar aluminum alloy welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(9): 8-15. DOI: 10.12073/j.hjxb.20200328001
    [6]WANG Rui, SHI Yu, LI Guang, LI Chunkai, HOU Guoqing. Effect of nickel on conductivity and corrosion of copper/stainless steel GTAW joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 53-58. DOI: 10.12073/j.hjxb.2019400312
    [7]HE Diqiu, MA Li, SUN Youqing, LAI Ruilin. Microstructures and properties of friction stir welds of C18000 copper alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(4): 55-60. DOI: 10.12073/j.hjxb.2019400100
    [8]ZHANG Jing, FENG Xiaosong, XU Hui, GAO Jiashuang. Mechanical properties and microstructures of laser coaxially assisted friction stir welded 2219-T6 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 82-86. DOI: 10.12073/j.hjxb.2018390206
    [9]HE Dingyong, ZHANG Hua, JIANG Jianmin, LI Xiaoyan. Effect of H2 flow rate on electrical conductivity of APS TiO2 coatings[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (8): 1-4.
    [10]XUE Song-bai, CHEN Yan, LÜ Xiao-chun, LIAO Yong-ping. Effect of cerium on wettability and mechanical properties of soldered joints for Sn-Ag-Cu lead free solder[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (10): 1-4.

Catalog

    Article views (270) PDF downloads (80) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return