Advanced Search
WU Kangwei, CHEN Yi, CHENG Guowen, LIU Qiang, LIN Tiesong, HUANG Yongde. Impact of copper-coated CNT content on the fatigue resistance of copper-based composite films[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(12): 99-105. DOI: 10.12073/j.hjxb.20230906003
Citation: WU Kangwei, CHEN Yi, CHENG Guowen, LIU Qiang, LIN Tiesong, HUANG Yongde. Impact of copper-coated CNT content on the fatigue resistance of copper-based composite films[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(12): 99-105. DOI: 10.12073/j.hjxb.20230906003

Impact of copper-coated CNT content on the fatigue resistance of copper-based composite films

More Information
  • Received Date: September 05, 2023
  • Available Online: June 19, 2024
  • In order to enhance the fatigue resistance of copper-based flexible thin films, copper-coated carbon nanotubes (CNTs) were incorporated into the ink formulation to prepare copper-based composite films, with a focus on analyzing the influence of copper-coated CNTs content on the microstructure and fatigue resistance of the composite films. The impact of copper-coated CNTs content on the microstructure and fatigue resistance of the composite films was emphasized and examined. The results indicated that when the copper-coated CNTs content was 1%, a highly conductive and fatigue-resistant copper-based composite film was obtained, with a resistivity of 17.73 μΩ·cm and the resistance change rate of 49%. This was attributed to the copper-coated CNTs being connected within the interstices of the copper structure, thereby serving as additional conductive pathways that improved conductivity. And it prevents dislocation movement at grain boundaries, delays crack propagation, suppresses the formation of sintering necks, and improves the fatigue resistance of composite films. Due to the minimal interfacial difference between the copper-coated CNTs and the copper matrix, diffusion occurs to the matrix surface during sintering. This results in a reduction of the surface area of the matrix, leading to the precipitation of copper particles. When the content of copper-coated CNTs increases to 2%, the volume and number of copper particles increase, causing a deterioration in the continuity of the microstructure. Consequently, this reduces the electrical conductivity and fatigue resistance of the composite film. Therefore, an appropriate amount of copper-coated CNTs can enhance the electrical conductivity and fatigue resistance of the composite film.

  • [1]
    Jin H, Abu-Raya Y S, Haick H. Advanced materials for health monitoring with skin-based wearable devices[J]. Advanced Healthcare Materials, 2017, 6(11): 1700024. doi: 10.1002/adhm.201700024
    [2]
    Shi X, Zuo Y, Zhai P, et al. Large-area display textiles integrated with functional systems[J]. Nature, 2021, 591(7849): 240 − 245. doi: 10.1038/s41586-021-03295-8
    [3]
    刘晓琴, 苏晓磊, 刘新峰, 等. 高温铜电子浆料的制备及性能研究[J]. 电子元件与材料, 2015, 34(1): 32 − 35.

    Liu Xiaoqin, Su Xiaolei, Liu Xinfeng, et al. Preparation and performance study of high-temperature copper electronic paste[J]. Electronic Components and Materials, 2015, 34(1): 32 − 35.
    [4]
    李冰, 苏晓磊, 王俊勃, 等. 低温铜电子浆料的制备及性能研究[J]. 化工新型材料, 2014, 42(12): 71 − 74.

    Li Bing, Su Xiaolei, Wang Junbo, et al. Preparation and performance study of low-temperature copper electronic paste[J]. New Chemical Materials, 2014, 42(12): 71 − 74.
    [5]
    刘博扬, 王冉冉, 孙静. 可视化柔性可穿戴传感器研究进展[J]. 化学分析, 2023(3): 305 − 315.

    Liu Boyang, Wang Ranran, Sun Jing. Research progress on visualized flexible wearable sensors[J]. Chinese Journal of Analytical Chemistry, 2023(3): 305 − 315.
    [6]
    Deng D, Qi T, Cheng Y, et al. Copper carboxylate with different carbon chain lengths as metal–organic decomposition ink[J]. Journal of Materials Science: Materials in Electronics, 2014, 25: 390 − 397. doi: 10.1007/s10854-013-1599-y
    [7]
    Li W, Yang Y, Zhang B, et al. Highly densified Cu wirings fabricated from air-stable Cu complex ink with high conductivity, enhanced oxidation resistance, and flexibility[J]. Advanced Materials Interfaces, 2018, 5(19): 1800798. doi: 10.1002/admi.201800798
    [8]
    Yu J, Lin Z, Xue WD, et al. Fabrication of superaligned carbon nanotubes reinforced copper matrix laminar composite by electrodeposition[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(9): 2994 − 3001. doi: 10.1016/S1003-6326(15)63926-7
    [9]
    Koti V, Singh K K, Singh R K. Experimental and statistical investigation on the wear and hardness behaviour of multiwalled carbon nanotubes reinforced copper nanocomposites[J]. Wear, 2022, 500: 204368.
    [10]
    吴键, 邵国森, 何代华, 等. 碳纳米管增强铝基复合材料的制备及力学性能研究[J]. 有色金属材料与工程, 2022, 43(1): 11 − 17.

    Wu Jian, Shao Guosen, He Daihua, et al. Preparation and mechanical property study of carbon nanotube reinforced aluminum matrix composites[J]. Nonferrous Metal Materials and Engineering, 2022, 43(1): 11 − 17.
    [11]
    蒋太炜. 高能球磨法制备 CNTs/Cu 复合材料 [D]. 昆明;昆明理工大学, 2012.

    Jiang Taiwei. Preparation of CNTs/Cu composites by high-energy ball milling [D]. Kunming; Kunming University of Science and Technology, 2012.
    [12]
    Sundaram R M, Sekiguchi A, Sekiya M, et al. Copper/carbon nanotube composites: research trends and outlook[J]. Royal Society open science, 2018, 5(11): 180814. doi: 10.1098/rsos.180814
    [13]
    亓钧雷, 万禹含, 张丽霞, 等. 碳纳米管增强TiNi复合钎料的制备与表征[J]. 焊接学报, 2014, 35(3): 27 − 30.

    Qi Junlei, Wan Yuhan, Zhang Lixia, et al. Preparation and characterization of carbon nanotube reinforced TiNi composite brazing filler metals[J]. Transactions of the China Welding Institution, 2014, 35(3): 27 − 30.
    [14]
    Tu J P, Yang Y Z, Wang L Y, et al. Tribological properties of carbon-nanotube-reinforced copper composites[J]. Tribology Letters, 2001, 10: 225 − 228. doi: 10.1023/A:1016662114589
    [15]
    祝儒飞, 郭宏, 尹法章, 等. 纳米碳纤维表面化学镀铜的研究[J]. 稀有金属, 2010(4): 552 − 556. doi: 10.3969/j.issn.0258-7076.2010.04.015

    Zhu Rufei, Guo Hong, Yin Fazhang, et al. Study on the surface chemical copper plating of carbon nanofibers[J]. Rare Metals, 2010(4): 552 − 556. doi: 10.3969/j.issn.0258-7076.2010.04.015
    [16]
    彭刚, 蔡晓兰, 周蕾, 等. 粉末冶金 CNTs/Cu 复合材料的显微组织与力学性能[J]. 粉末冶金材料科学与工程, 2016, 21(1): 129 − 136. doi: 10.3969/j.issn.1673-0224.2016.01.018

    Peng Gang, Cai Xiaolan, Zhou Lei, et al. Microstructure and mechanical properties of CNTs/Cu composites by powder metallurgy[J]. Materials Science and Engineering of Powder Metallurgy, 2016, 21(1): 129 − 136. doi: 10.3969/j.issn.1673-0224.2016.01.018
    [17]
    Li W, Sun Q, Li L, et al. The rise of conductive copper inks: challenges and perspectives[J]. Applied Materials Today, 2020, 18: 100451. doi: 10.1016/j.apmt.2019.100451
    [18]
    Joo S J, Park S H, Moon C J, et al. A highly reliable copper nanowire/nanoparticle ink pattern with high conductivity on flexible substrate prepared via a flash light-sintering technique[J]. ACS Applied Materials & Interfaces, 2015, 7(10): 5674 − 5684.
    [19]
    Alig I, Pötschke P, Lellinger D, et al. Establishment, morphology and properties of carbon nanotube networks in polymer melts[J]. Polymer, 2012, 53(1): 4 − 28. doi: 10.1016/j.polymer.2011.10.063
    [20]
    Hwang H J, Joo S J, Kim H S. Copper nanoparticle/multiwalled carbon nanotube composite films with high electrical conductivity and fatigue resistance fabricated via flash light sintering[J]. ACS Applied Materials & Interfaces, 2015, 7(45): 25413 − 25423.
    [21]
    Joo S J, Hwang H J, Kim H S. Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics[J]. Nanotechnology, 2014, 25(26): 265601. doi: 10.1088/0957-4484/25/26/265601
    [22]
    Zhan L, Zhu X, Qin X, et al. Sintering mechanism of copper nanoparticle sphere-plate of crystal misalignment: A study by molecular dynamics simulations[J]. Journal of Materials Research and Technology, 2021, 12: 668 − 678. doi: 10.1016/j.jmrt.2021.03.029
  • Related Articles

    [1]YAN Han, ZHAO Di, QI Tongfu, LENG Xuesong, FU Kuijun, HU Fengya. Effect of element Nb on microstructures and impact toughness of CGHAZ in TiNbV micro-alloyed steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(12): 33-37. DOI: 10.12073/j.hjxb.20200906001
    [2]WANG Dongpo, LIU Kaiyue, DENG Caiyan, GONG Baoming, WU Shipin, XIAO Na. Effects of PWHT on the impact toughness and fracture toughness of the weld metal under restraint welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(8): 63-67, 78. DOI: 10.12073/j.hjxb.20190914001
    [3]CAO Rui, YANG Zhaoqing, LI Jinmei, LEI Wanqing, ZHANG Jianxiao, CHEN Jianhong. Influence of fraction of coarse-grained heat affected zone on impact toughness for 09MnNiDR welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 7-13. DOI: 10.12073/j.hjxb.20190818003
    [4]LIU Zhengjun, QIN Hua, SU Yunhai, LIU Changjun, LU Yanpeng. Microstructure and low temperature impact toughness of vibration assisted welded BWELDY960Q steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 93-96.
    [5]DU Bing, SUN Fenglian, XU Yujun, LI Xiaoyu, LÜ Xiaochun, QIN Jian. Effect of welding methods on impact toughness of ultra-low carbon martensitic stainless steel welding wire deposited metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(8): 1-4.
    [6]HU Jie, JIANG Zhizhong, HUANG Jihua, CHEN Shuhai, ZHAO Xingke, ZHANG Hua. Effects of heat treatment processes on microstructure and impact toughness of weld metal of vacuum electron beam welding on CLAM steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (11): 67-71.
    [7]LIANG Guoli, YANG Shanwu, WU Huibin, LIU Xueli. Impact toughness of simulated CGHAZ with high heat input for adding trace Zr oil tank steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (11): 85-88.
    [8]XUE Gang, ZHAO Fuchen, JING Yanhong, NIU Jicheng, ZHANG Yonghui, GAI Dengyu. Effect of carbon on impact toughness of metal deposited with high strength austenite electrodes[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (8): 89-92.
    [9]ZHANG Yingqiao, ZHANG Hanqian, LIU Weiming. Effects of M-A constituent on toughness of coarse grain heat-affected zone in HSLA steels for oil tanks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (1): 109-112.
    [10]Ma Jin. EFFECT OF TRACE BORON ON IMPACT TOUGHNESS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1988, (3): 155-161.
  • Cited by

    Periodical cited type(5)

    1. 刘自刚,张建峰,钱雪娇,叶佳城,孙仲侃. 大熔覆速率TIG焊研究现状与展望. 热加工工艺. 2024(01): 12-16 .
    2. 王奕楷,庞世炫,王燮阳,黄增好,曹彪. 高频脉冲复合直流微TIG焊接电源及其电弧形态特征. 焊接. 2023(03): 54-59 .
    3. 俞雄军,苏斌. 双钨极氩弧焊技术的发展及其在核承压设备耐腐蚀层堆焊中的应用. 东方电气评论. 2022(04): 64-68 .
    4. 吴统立,杨嘉佳,王克鸿,郭顺,高琼. 高频复合双钨极氩弧焊电弧行为规律. 电焊机. 2019(05): 87-91 .
    5. 吴统立,王克鸿,冯曰海. 高频复合双钨极氩弧焊电源研制. 电焊机. 2019(06): 83-88 .

    Other cited types(7)

Catalog

    Article views (76) PDF downloads (25) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return