Advanced Search
ZHANG Lingyun, MA Honghao, SHEN Zhaowu, ZHOU Guoan. Micro-structure and mechanical properties of explosively welded steel/Cu pipes and Al/Cu pipe/rod via the Russian-dolls-like experimental arrangement[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(5): 1-6. DOI: 10.12073/j.hjxb.20201009003
Citation: ZHANG Lingyun, MA Honghao, SHEN Zhaowu, ZHOU Guoan. Micro-structure and mechanical properties of explosively welded steel/Cu pipes and Al/Cu pipe/rod via the Russian-dolls-like experimental arrangement[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(5): 1-6. DOI: 10.12073/j.hjxb.20201009003

Micro-structure and mechanical properties of explosively welded steel/Cu pipes and Al/Cu pipe/rod via the Russian-dolls-like experimental arrangement

More Information
  • Received Date: October 08, 2020
  • Available Online: July 04, 2021
  • The steel-Q235/copper-T2 pipes and aluminum-1060/copper-T2 composite pipe/rod are fabricated by an unique manufacturing process which we call it “the Russian-dolls-like experimental arrangement”. After the experiment, samples’ welding quality along the detonation direction is firstly evaluated by an optical microscope and a scanning electron microscope equipped with a backscattered electrons detector. Mechanical properties of welded samples are checked via longitudinal compression tests. Results show that due to the jet produced by part no. 6, there is a ϕ 3.0 mm spherical groove on top of the Al/Cu explosively-welded rod. Because of this, the section 8.5 mm from the top (Al/Cu couple) is not welded, while the Steel/Cu couple is not affected. Bonding interfaces of Steel/Cu and Steel/Cu couples both change from unstable ones to regular/wavy ones along the detonation direction. Atomic ratios of steel and copper around the Steel/Cu interface varies from 44∶56 to 72∶28, and AlCu and Al2Cu are identified around the Al/Cu interface via EDS analysis. Samples’ yield strength/strain in longitudinal compression for steel/Cu and Al/Cu couples are 598 MPa/5.8% and 340 MPa/4.8%, respectively.
  • Aizawa Y, Nishiwaki J, Harada Y, et al. Experimental and numerical analysis of the formation behavior of intermediate layers at explosive welded Al/Fe joint interfaces[J]. Journal of Manufacturing Processes, 2016, 24: 100 − 106. doi: 10.1016/j.jmapro.2016.08.002
    Zhou G A, Ma H H, Shen Z W, et al. Application of a new cleaner emulsion-explosive formula: Cu/Al parallel plates explosive welding[J]. Propellants Explosives Pyrotechnics, 2018, 43: 1041 − 1047. doi: 10.1002/prep.201800157
    Bataev I, Bataev A, Mali V, et al. Structural and mechanical properties of metallic-intermetallic laminate composites produced by explosive welding and annealing[J]. Materials & Design, 2012, 35: 225 − 234.
    周国安, 马宏昊, 沈兆武, 等. 正火处理对Cu/Al爆炸焊接板显微结构及力学性能的影响[J]. 焊接学报, 2019, 40(6): 46 − 51. doi: 10.12073/j.hjxb.2019400153

    Zhou Guoan, Ma Honghao, Shen Zhaowu, et al. Influence of normalizing on micro-structure and mechanical properties of Cu/Al explosive welded plate[J]. Transactions of the China Welding Institution, 2019, 40(6): 46 − 51. doi: 10.12073/j.hjxb.2019400153
    Mendes R, Ribeiro J, Loureiro A. Effect of explosive characteristics on the explosive welding of stainless steel to carbon steel in cylindrical configuration[J]. Materials & Design, 2013, 51: 182 − 192.
    Shi C G, Sun Z R, Fang Z H, et al. Design and test of a protective structure for the double vertical explosive welding of large titanium/steel plate[J]. China Welding, 2019, 28(3): 7 − 14.
    Xia H B, Wang S G, Ben H F. Microstructure and mechanical properties of Ti/Al explosive cladding[J]. Material & Design, 2014, 56: 1014 − 1019.
    Akbari M, Farhadi S. Experimental investigation of explosive welding of cp-titanium/AISI 304 stainless steel[J]. Materials & Design, 2009, 30(3): 459 − 468.
    Zhang T T, Wang W X, Zhang W, et al. Microstructure evolution and mechanical properties of an AA6061/AZ31B alloy plate fabricated by explosive welding[J]. Journal of Alloys and Compounds, 2018, 735: 1759 − 1768. doi: 10.1016/j.jallcom.2017.11.285
    Wei Y N, Luo Y G, Qu H T, et al. Microstructure evolution and failure analysis of an aluminum-copper cathode conductive head produced by explosive welding[J]. Journal of Materials Engineering and Performance, 2017, 26(12): 6158 − 6166. doi: 10.1007/s11665-017-3055-2
    Mali V I, Bataev A A, Maliutina I N, et al. Microstructure and mechanical properties of Ti/Ta/Cu/Ni alloy laminate composite materials produced by explosive welding[J]. International Journal of Advanced Manufacturing Technology, 2017, 93(9−12): 4285 − 4294. doi: 10.1007/s00170-017-0887-8
    Boronski D, Kotyk M, Mackowiak P, et al. Mechanical properties of explosively welded AA2519-AA1050-Ti6Al4V layered material at ambient and cryogenic conditions[J]. Materials & Design, 2017, 133: 390 − 403.
    缪广红, 艾九英, 马雷鸣, 等. 不锈钢/普碳钢双面爆炸复合的数值模拟[J]. 焊接学报, 2020, 41(8): 55 − 62. doi: 10.12073/j.hjxb.20200215001

    Miao Guanghong, Ai Jiuying, Ma Leiming, et al. Numerical simulation of double-sided explosive welding of stainless steel/ordinary carbon steel[J]. Transactions of the China Welding Institution, 2020, 41(8): 55 − 62. doi: 10.12073/j.hjxb.20200215001
    余勇, 马宏昊, 沈兆武, 等. 爆炸胀接铝/钢复合管的研究[J]. 高压物理学报, 2016, 30(2): 130 − 134. doi: 10.11858/gywlxb.2016.02.007

    Yu Yong, Ma Honghao, Shen Zhaowu, et al. Aluminum/steel composite pipe by explosion expansion[J]. Chinese Journal of High Pressure Physics, 2016, 30(2): 130 − 134. doi: 10.11858/gywlxb.2016.02.007
    Hokamoto K, Shimomiya K, Nishi M, et al. Fabrication of unidirectional porous-structured aluminum through explosive compaction using cylindrical geometry[J]. Journal of Materials Processing Technology, 2018, 251: 262 − 266. doi: 10.1016/j.jmatprotec.2017.07.022
    周国安, 马宏昊, 沈兆武, 等. 以黏土颗粒为惰性剂的低爆速乳化炸药爆炸性能及爆轰机理[J]. 火炸药学报, 2018, 41(3): 289 − 293, 302.

    Zhou Guoan, Ma Honghao, Shen Zhaowu, et al. Detonation properties and mechanism of low detonation velocity emulsion explosives with clay particles as the inert agents[J]. Chinese Journal of Explosives & Propellants, 2018, 41(3): 289 − 293, 302.
  • Related Articles

    [1]WANG Bo, YANG Fan, LI Lianbo, ZHANG Hongtao, DENG Qingwen. Analysis of weld forming in magnetically controlled Plasma-FCAW underwater hybrid welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(4): 74-80. DOI: 10.12073/j.hjxb.20211104005
    [2]HUANG Ruisheng, ZOU Jipeng, GONG Jianfeng, YANG Yicheng, LIANG Xiaomei. Dynamic behavior of laser scanning welding pool and plasma[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 11-16. DOI: 10.12073/j.hjxb.20191016004
    [3]LI Bin, ZHAO Zeyang, WANG Chunming, HU Xiyuan, GUO Lian. Behaviors of plasma and keyhole in laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(2): 87-91.
    [4]DONG Qipeng, ZHANG Jiongming, LEI Shaowu, ZHAO Xinkai. Simulation of characteristics of DC plasma arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(12): 27-30.
    [5]YANG Tao, XU Kewang, LIU Yongzhen, GAO Hongming, WU Lin. Analysis on arc characteristics of plasma-MIG hybrid arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (5): 62-66.
    [6]YANG Tao, ZHANG Shenghu, GAO Hongming, WU Lin, XU Kewang, LIU Yongzhen. Plasma-MIG hybrid arc welding with PID increment constant current or voltage control algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (3): 81-84,88.
    [7]WANG Dongsheng, TIAN Zongjun, ZHANG Shaowu, QU Guang, SHEN Lida, HUANG Yinhui. Numerical simulation of temperature field on nanostructured agglomerated powder during plasma spraying[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (7): 50-54.
    [8]LI Zhiyong, WANG Wei, WANG Xuyou, LI Huan. Analysis of laser-MAG hybrid welding plasma radiation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (3): 21-24,28.
    [9]ZHANG Yi-shun, DONG Xiao-qiang, LI De-yuan. Numerical simulation of fluid field and temperature field in plasma torch[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (9): 77-80.
    [10]Song Yonglun, Li Junyue. Thermo-equilibdum in welding are plasmas[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1994, (2): 138-145.
  • Cited by

    Periodical cited type(2)

    1. 严春妍,顾正家,聂榕圻,张可召,吴晨,王宝森. X80管线钢水下湿法多道焊残余应力分析. 焊接学报. 2024(03): 15-21+130 . 本站查看
    2. 李志刚,魏成法,刘德俊,杨翔. 高压水下湿法焊接电弧等离子体介质击穿机制. 焊接学报. 2023(08): 49-56+132 . 本站查看

    Other cited types(1)

Catalog

    Article views (546) PDF downloads (59) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return