Advanced Search
WANG Yongdong, GONG Shulin, TANG Mingri, SONG Min. Effect of laser cladding process on the microstructure and properties of high entropy alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 116-122. DOI: 10.12073/j.hjxb.20220928001
Citation: WANG Yongdong, GONG Shulin, TANG Mingri, SONG Min. Effect of laser cladding process on the microstructure and properties of high entropy alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 116-122. DOI: 10.12073/j.hjxb.20220928001

Effect of laser cladding process on the microstructure and properties of high entropy alloys

More Information
  • Received Date: September 27, 2022
  • Available Online: June 14, 2023
  • In order to investigate the effect of laser cladding process on the microstructure and properties of high entropy alloys, laser cladding technology is used to prepare high entropy alloy coatings on the surface of Q235 substrates under different cladding processes. The microstructure of the high-entropy alloy coating is observed and analyzed by optical microscope (OM), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), X-ray diffractometer, etc. The hardness and wear resistance of the coating are studied by micro hardness tester and friction wear tester. The results show that the coating width increases and the coating surface becomes flatter when the laser power increases for a certain scanning speed in macroscopic morphology. The width of the coating decreases when the scanning speed increases with a certain laser power. The phase structure is mainly composed of body-centered cubic (BCC) and face-centered cubic (FCC) structures. In microstructure, as the scanning speed increases or the laser power decreases, the grains in the coating become smaller and there is a tendency for the cellular crystals to grow into dendrite crystals in some areas. The hardness of the coating is significantly higher than that of the substrate, up to 553 HV; the wear resistance is better than that of the substrate.
  • Yeh J W. Alloy design strategies and future trends in high-entropy alloys[J]. JOM, 2013, 65(12): 1759 − 1771. doi: 10.1007/s11837-013-0761-6
    Cantor B. Multicomponent and high entropy alloys[J]. Entropy, 2014, 16(9): 4749 − 4768. doi: 10.3390/e16094749
    Erdogan A, Doleker K M, Zeytin S. Effect of Al and Ti on high-temperature oxidation behavior of CoCrFeNi-based high-entropy alloys[J]. JOM, 2019, 71(10): 3499 − 3510. doi: 10.1007/s11837-019-03679-2
    Gromov V E, Konovalov S V, Peregudov O A, et al. High-entropy alloy coatings: State and prospects[J]. Steel in Translation, 2022, 52(10): 899 − 906. doi: 10.3103/S0967091222100047
    田志刚, 李新梅, 秦忠, 等. 激光熔覆CoCrFeNiSix高熵合金涂层的组织与性能[J]. 焊接学报, 2022, 43(12): 53 − 63.

    Tian Zhigang, Li Xinmei, Qin Zhong, et al. Microstructure and properties of CoCrFeNiSix high-entropy alloy coating by laser cladding[J]. Transactions of the China Welding Institution, 2022, 43(12): 53 − 63.
    崔洪芝, 姜迪. 高熵合金涂层研究进展[J]. 金属学报, 2022, 58(1): 17 − 27.

    Cui Hongzhi, Jiang Di. Research progress of high-entropy alloy coatings[J]. Acta Metallurgica Sinica, 2022, 58(1): 17 − 27.
    Yang Jianghuai, Lian Guoguofu, Chen Changrong, et al. Prediction and sensitivity analysis of the surface quality in Ni60/WC coatings[J]. China Welding, 2023, 32(1): 35 − 45.
    宋鹏芳, 姜芙林, 王玉玲, 等. 激光能量密度对CrFeCoNiNb熔覆层组织演变和性能影响的试验研究[J]. 机械工程学报, 2023, 59(2): 127 − 137. doi: 10.3901/JME.2023.02.127

    Song Pengfang, Jiang Fulin, Wang Yuling, et al. Experimental study on the effect of energy density on microstructure evolution and properties of CrFeCoNiNb cladding layer[J]. Journal of Mechanical Engineering, 2023, 59(2): 127 − 137. doi: 10.3901/JME.2023.02.127
    Liu Hao, Gao Wenpeng, Liu Jian, et al. Microstructure and properties of CoCrFeNiTi high-entropy alloy coating fabricated by laser cladding[J]. Journal of Materials Engineering and Performance, 2020, 29: 7170 − 7178. doi: 10.1007/s11665-020-05204-y
    徐翠翠, 刘刚. CoCrFeNiTix合金的混合熵计算及分析[J]. 西安工业大学学报, 2017, 37(8): 621 − 627.

    Xu Cuicui, Liu Gang. Calculation and analysis of mixing entropy of CoCrFeNiTix alloys[J]. Journal of Xi'an Technological University, 2017, 37(8): 621 − 627.
    王永东, 宫书林, 汤明日, 等. Q235钢激光熔覆高熵合金的组织与性能[J]. 黑龙江科技大学学报, 2022, 32(3): 368 − 372.

    Wang Yongdong, Gong Shulin, Tang Mingri, et al. Microstructure and properties of laser cladding high entropy alloy on Q235 steel[J]. Journal of Heilongjiang University of Science and Technology, 2022, 32(3): 368 − 372.
    许明三, 李剑峰, 李驊登, 等. 激光熔覆粉料和工艺参数对45钢基体与熔覆层结合强度的影响研究[J]. 机械工程学报, 2017, 53(9): 209 − 216. doi: 10.3901/JME.2017.09.209

    Xu Mingsan, Li Jianfeng, Lee Hwateng, et al. Influence on powders and process parameters on bonding shear strength in laser cladding[J]. Journal of Mechanical Engineering, 2017, 53(9): 209 − 216. doi: 10.3901/JME.2017.09.209
    胡记. TC21钛合金表面激光熔覆Ti0.8CoCrFeNi系高熵合金复合涂层的研究[D]. 大连: 大连理工大学, 2021.

    Hu Ji. Experimental study on of laser cladding Ti0.8CoCrFeNi high-entropy alloy composite coating on TC21 titanium alloy[D]. Dalian: Dalian University of Technology, 2021.
    郜文鹏. 激光熔覆CoCrFeNiMx多相高熵合金涂层组织及高温摩擦磨损性能研究[D]. 徐州: 中国矿业大学, 2021.

    Gao Wenpeng. Study on microstructure and hightemperature friction and wear properties of CoCrFeNiMx multi-phase high-entropy alloy coatings fabricated by laser cladding[D]. Xuzhou: China University of Mining and Technology, 2021.
    程思梦. 粉末冶金法制备CrFeCoNiTix高熵合金组织与性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2019.

    Cheng Simeng. Study on microstructure and properties of CrFeCoNiTix high entropy alloy prepared by powder metallurgy[D]. Harbin: Harbin University of Science and Technology, 2019.
    Gu Zhen, Xi Shengqi, Sun Chongfeng. Microstructure and properties of laser cladding and CoCr2.5FeNi2Tix high-entropy alloy composite coatings[J]. Journal of Alloys and Compounds, 2020, 819: 152986. doi: 10.1016/j.jallcom.2019.152986
    邓德伟, 常占东, 马云波, 等. 工艺参数对316L激光熔覆层组织性能及残余应力的影响[J]. 应用激光, 2021, 41(1): 83 − 88.

    Deng Dewei, Chang Zhandong, Ma Yunbo, et al. Influence of process parameters on microstructure and residual stress of 316L laser cladding Layer[J]. Applied Laser, 2021, 41(1): 83 − 88.
  • Related Articles

    [1]FENG Yulan, WU Zhisheng, SUN Zhiyu. Numerical simulation of the influence of thickness of cladding material on stress and strain of welded joint of stainless steel composite plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 73-82. DOI: 10.12073/j.hjxb.20230606001
    [2]JIANG Shuying, CAI Chang, ZHAO Ming, HUANG Wanqun. Microstructure and properties of Q235 steel/6061 aluminum alloy resistance spot welding joint based on high-entropy alloy interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 71-78. DOI: 10.12073/j.hjxb.20220826002
    [3]GUI Xiaoyan, ZHANG Yanxi, YOU Deyong, GAO Xiangdong. Numerical simulation and test for influence of laser arc hybrid welding sequence on 304 stainless steel T-joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 34-39. DOI: 10.12073/j.hjxb.20210324005
    [4]ZHOU Li, ZHANG Renxiao, SHU Fengyuan, HUANG Yongxian, FENG Jicai. Microstructure and mechanical properties of friction stir welded joint of Q235 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 80-84. DOI: 10.12073/j.hjxb.2019400076
    [5]HUANG Bensheng, CHEN Quan, YANG Jiang, LIU Ge, YI Hongyu. Numerical simulation of welding residual stress and distortion in Q345/316L dissimilar steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 138-144. DOI: 10.12073/j.hjxb.2019400057
    [6]WANG Houqin, ZHANG Binggang, WANG Ting, FENG Jicai. Numerical simulation of molten pool flow behavior in stationary electron beam welding of 304 stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 57-61.
    [7]SUN Fangfang, LI Mengsheng, WANG Yang, ZHAO Ying. Numerical simulation on 201 stainless steel spot welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (2): 21-24.
    [8]WANG Jianmin, ZHU Xi, LIU Runquan. Three dimensional numerical simulation for explosive welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (5): 109-112.
    [9]Liu Renpei, Dong Zujue, Wei Yanhong. Numerical Simulation Model of Stress-strain Distributions for Weld Metal Solidification Cracking in Stainless Steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (4): 238-243.
    [10]Wei Yanhong, Liu Renpei, Dong Zujue. Numerical Simulation of Temperature Fields for Weld Metal Solidification Cracking in Stainless Steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (3): 199-204.
  • Cited by

    Periodical cited type(6)

    1. 侯东旭,殷子强,陈培敦,夏佃秀,王守仁. 不同活化剂对超薄板脉冲激光焊焊接接头组织及性能的影响. 电焊机. 2025(03): 48-57 .
    2. 郭广飞,任明皓,姜恒,吴锴,汪志福,章小浒. 热输入对低温高锰钢焊接接头组织和性能的影响. 机械工程材料. 2025(03): 94-99 .
    3. 邬亲丹,林毅,官忠波,杨飞,朱宇霆. 回火对E101T1-K3C熔敷金属显微组织和力学性能的影响. 机械制造文摘(焊接分册). 2024(01): 1-5+11 .
    4. 曾道平,郑韶先,安同邦,代海洋,马成勇. 440 MPa级高强钢焊条熔敷金属组织与低温冲击韧性研究. 焊接学报. 2024(03): 120-128+136 . 本站查看
    5. 代海洋,贺建芸,付俊杰,杜立强,魏靖柠,左月,安同邦. 热输入对440 MPa级HSLA钢埋弧焊对接接头组织及性能的影响. 电焊机. 2024(05): 52-59 .
    6. 汤忖江,安同邦,彭云,林纯丞,马成勇,刘旭明. 焊接热输入对690 MPa级HSLA钢焊缝金属组织与力学性能的影响. 焊接学报. 2024(09): 110-119 . 本站查看

    Other cited types(1)

Catalog

    Article views (269) PDF downloads (84) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return