Citation: | WANG Yongdong, GONG Shulin, TANG Mingri, SONG Min. Effect of laser cladding process on the microstructure and properties of high entropy alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 116-122. DOI: 10.12073/j.hjxb.20220928001 |
Yeh J W. Alloy design strategies and future trends in high-entropy alloys[J]. JOM, 2013, 65(12): 1759 − 1771. doi: 10.1007/s11837-013-0761-6
|
Cantor B. Multicomponent and high entropy alloys[J]. Entropy, 2014, 16(9): 4749 − 4768. doi: 10.3390/e16094749
|
Erdogan A, Doleker K M, Zeytin S. Effect of Al and Ti on high-temperature oxidation behavior of CoCrFeNi-based high-entropy alloys[J]. JOM, 2019, 71(10): 3499 − 3510. doi: 10.1007/s11837-019-03679-2
|
Gromov V E, Konovalov S V, Peregudov O A, et al. High-entropy alloy coatings: State and prospects[J]. Steel in Translation, 2022, 52(10): 899 − 906. doi: 10.3103/S0967091222100047
|
田志刚, 李新梅, 秦忠, 等. 激光熔覆CoCrFeNiSix高熵合金涂层的组织与性能[J]. 焊接学报, 2022, 43(12): 53 − 63.
Tian Zhigang, Li Xinmei, Qin Zhong, et al. Microstructure and properties of CoCrFeNiSix high-entropy alloy coating by laser cladding[J]. Transactions of the China Welding Institution, 2022, 43(12): 53 − 63.
|
崔洪芝, 姜迪. 高熵合金涂层研究进展[J]. 金属学报, 2022, 58(1): 17 − 27.
Cui Hongzhi, Jiang Di. Research progress of high-entropy alloy coatings[J]. Acta Metallurgica Sinica, 2022, 58(1): 17 − 27.
|
Yang Jianghuai, Lian Guoguofu, Chen Changrong, et al. Prediction and sensitivity analysis of the surface quality in Ni60/WC coatings[J]. China Welding, 2023, 32(1): 35 − 45.
|
宋鹏芳, 姜芙林, 王玉玲, 等. 激光能量密度对CrFeCoNiNb熔覆层组织演变和性能影响的试验研究[J]. 机械工程学报, 2023, 59(2): 127 − 137. doi: 10.3901/JME.2023.02.127
Song Pengfang, Jiang Fulin, Wang Yuling, et al. Experimental study on the effect of energy density on microstructure evolution and properties of CrFeCoNiNb cladding layer[J]. Journal of Mechanical Engineering, 2023, 59(2): 127 − 137. doi: 10.3901/JME.2023.02.127
|
Liu Hao, Gao Wenpeng, Liu Jian, et al. Microstructure and properties of CoCrFeNiTi high-entropy alloy coating fabricated by laser cladding[J]. Journal of Materials Engineering and Performance, 2020, 29: 7170 − 7178. doi: 10.1007/s11665-020-05204-y
|
徐翠翠, 刘刚. CoCrFeNiTix合金的混合熵计算及分析[J]. 西安工业大学学报, 2017, 37(8): 621 − 627.
Xu Cuicui, Liu Gang. Calculation and analysis of mixing entropy of CoCrFeNiTix alloys[J]. Journal of Xi'an Technological University, 2017, 37(8): 621 − 627.
|
王永东, 宫书林, 汤明日, 等. Q235钢激光熔覆高熵合金的组织与性能[J]. 黑龙江科技大学学报, 2022, 32(3): 368 − 372.
Wang Yongdong, Gong Shulin, Tang Mingri, et al. Microstructure and properties of laser cladding high entropy alloy on Q235 steel[J]. Journal of Heilongjiang University of Science and Technology, 2022, 32(3): 368 − 372.
|
许明三, 李剑峰, 李驊登, 等. 激光熔覆粉料和工艺参数对45钢基体与熔覆层结合强度的影响研究[J]. 机械工程学报, 2017, 53(9): 209 − 216. doi: 10.3901/JME.2017.09.209
Xu Mingsan, Li Jianfeng, Lee Hwateng, et al. Influence on powders and process parameters on bonding shear strength in laser cladding[J]. Journal of Mechanical Engineering, 2017, 53(9): 209 − 216. doi: 10.3901/JME.2017.09.209
|
胡记. TC21钛合金表面激光熔覆Ti0.8CoCrFeNi系高熵合金复合涂层的研究[D]. 大连: 大连理工大学, 2021.
Hu Ji. Experimental study on of laser cladding Ti0.8CoCrFeNi high-entropy alloy composite coating on TC21 titanium alloy[D]. Dalian: Dalian University of Technology, 2021.
|
郜文鹏. 激光熔覆CoCrFeNiMx多相高熵合金涂层组织及高温摩擦磨损性能研究[D]. 徐州: 中国矿业大学, 2021.
Gao Wenpeng. Study on microstructure and hightemperature friction and wear properties of CoCrFeNiMx multi-phase high-entropy alloy coatings fabricated by laser cladding[D]. Xuzhou: China University of Mining and Technology, 2021.
|
程思梦. 粉末冶金法制备CrFeCoNiTix高熵合金组织与性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2019.
Cheng Simeng. Study on microstructure and properties of CrFeCoNiTix high entropy alloy prepared by powder metallurgy[D]. Harbin: Harbin University of Science and Technology, 2019.
|
Gu Zhen, Xi Shengqi, Sun Chongfeng. Microstructure and properties of laser cladding and CoCr2.5FeNi2Tix high-entropy alloy composite coatings[J]. Journal of Alloys and Compounds, 2020, 819: 152986. doi: 10.1016/j.jallcom.2019.152986
|
邓德伟, 常占东, 马云波, 等. 工艺参数对316L激光熔覆层组织性能及残余应力的影响[J]. 应用激光, 2021, 41(1): 83 − 88.
Deng Dewei, Chang Zhandong, Ma Yunbo, et al. Influence of process parameters on microstructure and residual stress of 316L laser cladding Layer[J]. Applied Laser, 2021, 41(1): 83 − 88.
|
[1] | FENG Yulan, WU Zhisheng, SUN Zhiyu. Numerical simulation of the influence of thickness of cladding material on stress and strain of welded joint of stainless steel composite plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 73-82. DOI: 10.12073/j.hjxb.20230606001 |
[2] | JIANG Shuying, CAI Chang, ZHAO Ming, HUANG Wanqun. Microstructure and properties of Q235 steel/6061 aluminum alloy resistance spot welding joint based on high-entropy alloy interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 71-78. DOI: 10.12073/j.hjxb.20220826002 |
[3] | GUI Xiaoyan, ZHANG Yanxi, YOU Deyong, GAO Xiangdong. Numerical simulation and test for influence of laser arc hybrid welding sequence on 304 stainless steel T-joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 34-39. DOI: 10.12073/j.hjxb.20210324005 |
[4] | ZHOU Li, ZHANG Renxiao, SHU Fengyuan, HUANG Yongxian, FENG Jicai. Microstructure and mechanical properties of friction stir welded joint of Q235 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 80-84. DOI: 10.12073/j.hjxb.2019400076 |
[5] | HUANG Bensheng, CHEN Quan, YANG Jiang, LIU Ge, YI Hongyu. Numerical simulation of welding residual stress and distortion in Q345/316L dissimilar steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 138-144. DOI: 10.12073/j.hjxb.2019400057 |
[6] | WANG Houqin, ZHANG Binggang, WANG Ting, FENG Jicai. Numerical simulation of molten pool flow behavior in stationary electron beam welding of 304 stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 57-61. |
[7] | SUN Fangfang, LI Mengsheng, WANG Yang, ZHAO Ying. Numerical simulation on 201 stainless steel spot welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (2): 21-24. |
[8] | WANG Jianmin, ZHU Xi, LIU Runquan. Three dimensional numerical simulation for explosive welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (5): 109-112. |
[9] | Liu Renpei, Dong Zujue, Wei Yanhong. Numerical Simulation Model of Stress-strain Distributions for Weld Metal Solidification Cracking in Stainless Steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (4): 238-243. |
[10] | Wei Yanhong, Liu Renpei, Dong Zujue. Numerical Simulation of Temperature Fields for Weld Metal Solidification Cracking in Stainless Steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (3): 199-204. |
1. |
侯东旭,殷子强,陈培敦,夏佃秀,王守仁. 不同活化剂对超薄板脉冲激光焊焊接接头组织及性能的影响. 电焊机. 2025(03): 48-57 .
![]() | |
2. |
郭广飞,任明皓,姜恒,吴锴,汪志福,章小浒. 热输入对低温高锰钢焊接接头组织和性能的影响. 机械工程材料. 2025(03): 94-99 .
![]() | |
3. |
邬亲丹,林毅,官忠波,杨飞,朱宇霆. 回火对E101T1-K3C熔敷金属显微组织和力学性能的影响. 机械制造文摘(焊接分册). 2024(01): 1-5+11 .
![]() | |
4. |
曾道平,郑韶先,安同邦,代海洋,马成勇. 440 MPa级高强钢焊条熔敷金属组织与低温冲击韧性研究. 焊接学报. 2024(03): 120-128+136 .
![]() | |
5. |
代海洋,贺建芸,付俊杰,杜立强,魏靖柠,左月,安同邦. 热输入对440 MPa级HSLA钢埋弧焊对接接头组织及性能的影响. 电焊机. 2024(05): 52-59 .
![]() | |
6. |
汤忖江,安同邦,彭云,林纯丞,马成勇,刘旭明. 焊接热输入对690 MPa级HSLA钢焊缝金属组织与力学性能的影响. 焊接学报. 2024(09): 110-119 .
![]() |