Advanced Search
LIU Yuan, Li Yue, WANG Jianfeng, WANG Leilei, ZHAN Xiaohong. The effect of heat input on the dynamic characteristic of keyhole during laser mirror welding of 2219 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 103-110. DOI: 10.12073/j.hjxb.20220802003
Citation: LIU Yuan, Li Yue, WANG Jianfeng, WANG Leilei, ZHAN Xiaohong. The effect of heat input on the dynamic characteristic of keyhole during laser mirror welding of 2219 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 103-110. DOI: 10.12073/j.hjxb.20220802003

The effect of heat input on the dynamic characteristic of keyhole during laser mirror welding of 2219 aluminum alloy

More Information
  • Received Date: August 01, 2022
  • Available Online: April 20, 2023
  • In this paper, based on the laser mirror welding process of 2219 aluminum alloy, the thermo-flow coupling model of laser mirror welding process was established, and the dynamic characteristics of keyhole were quantitatively solved and analyzed. It is found that the keyhole is coupled rapidly and then maintained small fluctuations during the laser mirror welding process. Before keyhole coupling, the cross-section area difference of keyhole on both sides is small, and the maximum difference is only 0.35 mm2; After keyhole coupling, the cross-sectional area of keyhole is kept increasing and fluctuated within a certain range at 120 ms. The increase of heat input can promote the coupling degree and stability of keyhole. At the same time, the laser power has a greater influence on the coupling area of keyhole, while the welding speed has a greater influence on the area of keyhole opening. Based on the above rules, the optimized welding process window for laser mirror welding of 2219 aluminum alloy with 6 mm thick is summarized.
  • 张琪. 耐热铝合金的研究及应用现状与展望[J]. 有色金属加工, 2021, 50(1): 1 − 4.

    Zhang Qi. Current status and prospects of heat-resistant aluminum alloys[J]. Nonferrous Metals Processing, 2021, 50(1): 1 − 4.
    白志玲. 铝合金的研究现状及应用[J]. 科技广场, 2015(12): 18 − 20. doi: 10.3969/j.issn.1671-4792.2015.12.004

    Bai Zhiling. Status quo of research in aluminum alloys and the application[J]. Science Mosaic, 2015(12): 18 − 20. doi: 10.3969/j.issn.1671-4792.2015.12.004
    邵定林. 航空铝合金搅拌摩擦焊接头性能研究[D]. 南京: 南京航空航天大学, 2011.

    Shao Dinglin. Research on properties of FSW butt joint of aluminum alloy 7022[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011.
    项云忠. 6061/2A12异种铝合金激光扫描焊接接头组织性能研究[D]. 武汉: 华中科技大学, 2019.

    Xiang Yunzhong. Study on microstructure and properties of dissimilar 6061/2A12 aluminum alloys welding joints of laser beam scanning[D]. Wuhan: Huazhong University of Science & Technology, 2019.
    张聃. Invar合金激光-MIG复合焊接过程多相耦合流场行为研究[D]. 南京: 南京航空航天大学, 2018.

    Zhang Dan. Study on multiphase coupled flow field behavior during laser-MIG hybrid welding of Invar alloy[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
    梁融. 基于热流固耦合的激光焊接数值模拟方法研究[D]. 上海: 上海交通大学, 2019.

    Liang Rong. Study on numerical simulation for laser welding by coupled Thermo-hydro-mechanical method[D]. Shanghai: Shanghai Jiao Tong University, 2019.
    Jahn M, Montalvo-Urquizo J. Modeling and simulation of keyhole-based welding as multi-domain problem using the extended finite element method[J]. Applied Mathematical Modelling, 2020, 82: 731 − 747. doi: 10.1016/j.apm.2020.01.072
    彭根琛. 铝合金真空激光焊接特性及能量传输机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    Peng Genchen. Research on characteristics and energy transfer mechanism of laser welding under vacuum for aluminum alloys[D]. Harbin: Harbin Institute of Technology, 2020.
    田书豪. 铝合金激光镜像焊接熔池稳定性及焊缝形貌研究[D]. 南京: 南京航空航天大学, 2021.

    Tian Shuhao. Stability of the molten pools and welding morphology of laser mirror welded aluminum alloys[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021.
    陆建卫. 激光焊接技术的研究现状及应用[J]. 科技资讯, 2021, 19(25): 41 − 43. doi: 10.16661/j.cnki.1672-3791.2109-5042-8165

    Lu Jianwei. Research status and application of laser welding technology[J]. Science & Technology Information, 2021, 19(25): 41 − 43. doi: 10.16661/j.cnki.1672-3791.2109-5042-8165
    陈彦斌. 现代激光焊接技术[M]. 北京: 科学出版社, 2006.

    Chen Yanbin. Modern laser welding technology[M]. Beijing: Science Press, 2006.
    占小红, 欧文敏, 魏艳红, 等. 大型客机机身壁板激光焊接工艺性分析[J]. 航空制造技术, 2014(17): 42 − 45. doi: 10.3969/j.issn.1671-833X.2014.17.003

    Zhan Xiaohong, Ou Wenmin, Wei Yanhong, et al. Manufacturability analysis on laser welding process of large passenger aircraft fuselage panel[J]. Aeronautical Manufacturing Technology, 2014(17): 42 − 45. doi: 10.3969/j.issn.1671-833X.2014.17.003
    杨晓禹, 高宝亭, 刚建伟, 等. 2219铝合金T87状态板材生产过程中的热处理工艺研究[J]. 轻合金加工技术, 2019, 47(6): 30 − 35. doi: 10.13979/j.1007-7235.2019.06.005

    Yang Xiaoyu, Gao Baoting, Gang Jianwei, et al. Study on heat treatment technology of 2219-T87 aluminum alloy plate in production process[J]. Light Alloy Fabrication Technology, 2019, 47(6): 30 − 35. doi: 10.13979/j.1007-7235.2019.06.005
    Xia P, Yan F, Kong F, et al. Prediction of weld shape for fiber laser keyhole welding based on finite element analysis[J]. The International Journal of Advanced Manufacturing Technology, 2014, 75(1-4): 363 − 372. doi: 10.1007/s00170-014-6129-4
  • Related Articles

    [1]JIANG Shuying, CAI Chang, ZHAO Ming, HUANG Wanqun. Microstructure and properties of Q235 steel/6061 aluminum alloy resistance spot welding joint based on high-entropy alloy interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 71-78. DOI: 10.12073/j.hjxb.20220826002
    [2]DONG Shaokang, MA Yuhang, ZHU Hao, WANG Chenji, CAO Zhilong, WANG Jun. Effect of Ni interlayer on microstructure of aluminum/magnesium dissimilar metal friction stir welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 84-89. DOI: 10.12073/j.hjxb.20211202002
    [3]MA Lin, WEN Qi, LI Mingshen, ZHOU Changzhuang, CUI Qinghe. Microstructure evolution and defect analysis of ultrasonic-assisted transient liquid phase bonding of AZ31B Mg alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(6): 30-36. DOI: 10.12073/j.hjxb.20190817001
    [4]YANG Zonghui, SHEN Yifu, CHU Yajie, CHENG Jialin, LI Xiaoquan. Tungsten/steel vacuum diffusion bonding using Co/Ni composite interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 54-58. DOI: 10.12073/j.hjxb.20190823003
    [5]ZHANG Wei, AO Sansan, ZENG Zhi, LUO Zhen, ZUO Xinde. Ultrasonic welding of NiTi shape memory alloy with Cu interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 64-67. DOI: 10.12073/j.hjxb.2019400043
    [6]ZHANG Yong, YE Wu, ZHOU Yunyun, XIE Hongxia, ZHANG Zhihan, CHU Qiang, LI Wenya. Defect repair of resistance spot welded aluminum alloy joint by friction stirring[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(3): 17-21.
    [7]PENG Li, ZHOU Dianwu, WU Ping, ZHANG Yi, CHEN Genyu. Laser lap welding of zinc-coated steel and 6016 aluminum alloy with Pb interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (12): 81-84.
    [8]ZHAI Qiuya, TONG Duxi, LI Weiwei, GONG Shaotao, . Preparation and welding performance of amorphous interlayer alloys for TLP bonding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (9): 17-20.
    [9]ZHAO Limin, LIU Liming, XU Rongzheng, ZHANG Zhaodong. Diffusion bonding of Mg/Al alloy with Zn interlayer metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (10): 9-12.
    [10]CHEN Si-jie, JING Xiao-tian, LI Xin-geng. Microstructure and properties of the T91 TLP bonded joint with different interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (2): 77-82.

Catalog

    Article views (251) PDF downloads (48) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return