Advanced Search
MA Lin, WEN Qi, LI Mingshen, ZHOU Changzhuang, CUI Qinghe. Microstructure evolution and defect analysis of ultrasonic-assisted transient liquid phase bonding of AZ31B Mg alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(6): 30-36. DOI: 10.12073/j.hjxb.20190817001
Citation: MA Lin, WEN Qi, LI Mingshen, ZHOU Changzhuang, CUI Qinghe. Microstructure evolution and defect analysis of ultrasonic-assisted transient liquid phase bonding of AZ31B Mg alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(6): 30-36. DOI: 10.12073/j.hjxb.20190817001

Microstructure evolution and defect analysis of ultrasonic-assisted transient liquid phase bonding of AZ31B Mg alloy

More Information
  • Received Date: August 16, 2019
  • Available Online: September 26, 2020
  • Ultrasound-promoted transient liquid phase bonding (U-TLP) can achieve fast connection of difficult-to-wet materials in the atmosphere. It is a high-quality, high-efficiency, low-cost advanced connection method. This paper uses AZ31B magnesium alloy as the substrate. Pure zinc is the middle layer, and the evolution law of the microstructure of the bonding zone under ultrasonic irradiation is analyzed. The formation mechanism of Mg/Zn/Mg U-TLP interface defects is investigated. The results show that the microstructure of the bonded zone is composed of fine Mg-Zn eutectic with the extension of ultrasonic time. The liquid phase structure consisting of alternating MgZn and Mg7Zn3 phases gradually transforms to the fully diffused α-Mg phase, and the joint shear strength increases. However, when the ultrasonic time is increased to 60s, due to the loss of the liquid phase, pore defects appeared along welding seam. The joint shear strength is 55 MPa, which is 64.7% of the base material compressive shear strength. Using the secondary ultrasonic optimization process during the cooling process, the joint shear strength increased by 17%.
  • 丁文江, 吴玉娟, 彭立明, 等. 高性能镁合金研究及应用的新进展[J]. 中国材料进展, 2010, 29(8): 37 − 45.

    Ding Wenjiang, Wu Yujuan, Peng Liming, et al. Research and application development of advanced magnesium alloys[J]. Materials China, 2010, 29(8): 37 − 45.
    苗玉刚, 韩端锋, 姚竞争, 等. 镁/钢异种合金激光深熔钎焊工艺特性[J]. 焊接学报, 2011, 32(1): 45 − 48.

    Miao Yugang, Han Duanfeng, Yao Jingzheng, et al. Welding characteristics of laser penetration welding-brazed Mg/steel dissimilar alloys[J]. Transactions of the China Welding Institution, 2011, 32(1): 45 − 48.
    张冠星, 钟素娟, 孙华为, 等. Mg-Al-Sn钎料及其AZ61A镁合金钎焊接头组织性能分析[J]. 焊接学报, 2018, 39(1): 41 − 44. doi: 10.12073/j.hjxb.2018390010

    Zhang Guanxing, Zhong Sujuan, Sun Huawei, et al. Microstructure and properties of Mg-Al-Sn filling metal and solder joint of AZ61A magnesium alloy[J]. Transactions of the China Welding Institution, 2018, 39(1): 41 − 44. doi: 10.12073/j.hjxb.2018390010
    Tan Ming, Quan Gaofeng, Liu Zhaoming. Extrusion process and property of AZ31 magnesium alloy[J]. China Welding, 2019, 28(2): 10 − 14.
    李丰, 党鹏飞, 刘雪松. 基于不旋转轴肩的铝镁异种材料搅拌摩擦焊[J]. 焊接学报, 2018, 39(5): 55 − 58.

    Li Feng, Dang Pengfei, Liu Xuesong. Dissimilar friction stir welding of Al/Mg alloys based on non-rotational shoulder[J]. Transactions of the China Welding Institution, 2018, 39(5): 55 − 58.
    Xie R, Chen X, Lai Z, et al. Microstructure, mechani-cal properties and mechanism of ultrasound-assisted rapid transient liquid phase bonding of magnesium alloy in air[J]. Materials & Design, 2016, 91(2): 19 − 27.
    Lai Z, Chen X G, Pan C, et al. Joining Mg alloys with Zn interlayer by novel ultrasonic-assisted transient liquid phase bonding method in air[J]. Materials Letters, 2016, 166: 219 − 222. doi: 10.1016/j.matlet.2015.11.031
    Lai Z, Xie R S, Pan C, et al. Ultrasound-assisted transient liquid phase bonding of magnesium alloy using brass interlayer in Air[J]. Journal of Materials Science & Technology, 2016, 33(6): 567 − 572.
    张贵锋, 张建勋, 包亚峰. 日本关于固相扩散焊界面空洞收缩机理的研究[J]. 焊接, 2001(10): 14 − 18. doi: 10.3969/j.issn.1001-1382.2001.10.004

    Zhang Guifeng, Zhang Jianxun, Bao Yafeng. Studies on void shrinkage mechanism in solid state diffusion bonding interface in Janpan[J]. Welding & Joining, 2001(10): 14 − 18. doi: 10.3969/j.issn.1001-1382.2001.10.004
    Yan J C, Xu H B, Xu Z W, et al. Modelling behaviour of oxide film during vibration diffusion bonding of SiCp/A356 composite in air[J]. Materials Science and Technology, 2004, 20: 1489 − 1492. doi: 10.1179/026708304X3926
    Xu Z, Yan J, Zhang B, et al. Behaviors of oxide film at the ultrasonic aided interaction interface of Zn–Al alloy and Al2O3p /6061Al composites in air[J]. Materials Science & Engineering A, 2006, 415(1): 80 − 86.
    Wang Q, Chen X, Zhu L, et al. Rapid ultrasound-induced transient-liquid-phase bonding of Al-50Si alloys with Zn interlayer in air for electrical packaging application[J]. Ultrasonics Sonochemistry, 2017, 34: 947 − 952. doi: 10.1016/j.ultsonch.2016.08.004
    Huang J X, Wang J Q, Yang Z G, et al. Ultrasonic effect mechanism on transient liquid phase bonding joints of SiCp, reinforced Mg metal matrix composites using Zn-Al-Zn multi-interlayer[J]. Ultrasonics Sonochemistry, 2018, 43: 101 − 109. doi: 10.1016/j.ultsonch.2017.11.022
    Padhy G K, Wu C S, Gao S. Subgrain formation in ultrasonic enhanced friction stir welding of aluminium alloy[J]. Materials Letters, 2016, 183: 34 − 39. doi: 10.1016/j.matlet.2016.07.033
    马琳. 液态钎料超声驱动填缝机理及声空化作用研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
    刘浩, 柯孚久, 潘晖, 等. 铜-铝扩散焊及拉伸的分子动力学模拟[J]. 物理学报, 2007, 56(1): 407 − 412. doi: 10.3321/j.issn:1000-3290.2007.01.067

    Liu Hao, Ke Fujiu, Pan Hui, et al. Molecular dynamics simulation of the diffusion bonding and tensile behavior of a Cu-Al interface[J]. Acta Physica Sinica, 2007, 56(1): 407 − 412. doi: 10.3321/j.issn:1000-3290.2007.01.067
  • Related Articles

    [1]MA Lin, LI Mingshen, WHEN Qi, JI Shude, ZHOU Changzhuang. Effect of zinc interlayer on Hook defects of aluminum alloy ultrasonic assisted friction stir spot welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(4): 125-132. DOI: 10.12073/j.hjxb.2018400112
    [2]LUO Yi1,2, HAN Jingtao1,2, ZHU Liang1,2, ZHANG Chengyang1,2. Study on inducement and equilibrium mechanism of pore defects in vacuum electron beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(8): 107-110. DOI: 10.12073/j.hjxb.20150804002
    [3]FU Yuming, ZHAO Huayang, DU Wenlian, LI Yanfang, ZHENG Lijuan. Fatigue life and strengthening research of welded joints with hole defects by using electromagnetic heating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(4): 31-34. DOI: 10.12073/j.hjxb.20170407
    [4]CHEN Qihao, LIN Sanbao, YANG Chunli, FAN Chenglei. Analysis on Influencing Mechanism of Periodical Ultrasound on Formation of TIG Weld of Aluminum Alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(3): 9-12.
    [5]CHI Dazhao, GANG Tie. Defect detection method based on ultrasonic clutter wave suppression[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(10): 17-20.
    [6]WANG Ke-hong, YOU Qiu-rong, SHEN Ying-ji. Preliminary discussion about image character of gas pore in MAG welding based on vision sensing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (12): 13-16.
    [7]WANG Ya-rong, ZHANG Zhong-dian. Defects in joint for resistance spot welding of magnesium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (7): 9-12.
    [8]Liu Dezhen, Wei Xing, Zhou Yanhua. Ultrasonic C Scanning Image of Weld Defects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (2): 77-83.
    [9]Peng Rihui, Luo Ligeng, Liang Dongtu, Wang Wenying, Ma Yenwen. PREDICTION OF WELD DEFECTS FOR AN OIL CRACKING FURNACE[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1985, (4): 171-176.
    [10]Wang Zhechang, Yu Erjing. MECHANISM OF PORE FORMATION IN TITANIUM WELDS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1980, (1): 18-26.
  • Cited by

    Periodical cited type(2)

    1. 刘伟,张鑫,李素丽,李小龙. 基于焦耳热增材制造过程的温度场分析研究. 焊接技术. 2023(10): 1-4 .
    2. 张鑫,刘伟,张伟博,李小龙. 金属3D打印焦耳热最大变形量数值分析. 焊接技术. 2023(11): 1-5 .

    Other cited types(0)

Catalog

    Article views (435) PDF downloads (17) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return