Citation: | YANG Weiran, JI Tongtong, DING Yu, WANG Fengjiang. Effect of Bi addition on interfacial microstructures and properties of Sn-1.0Ag-0.5Cu Pb-free solder joints during isothermal aging and thermal cycling[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(11): 157-162. DOI: 10.12073/j.hjxb.20220709003 |
Terashima S, Kariya Y, Hosoi T, et al. Effect of silver content on thermal fatigue life of Sn-xAg-0.5Cu flip-chip interconnects[J]. Journal of Electronic Materials, 2003, 32(12): 1527 − 1533. doi: 10.1007/s11664-003-0125-z
|
Shnawah A A, Said S, Sabri M, et al. Microstructure, mechanical, and thermal properties of the Sn-1Ag-0.5Cu solder alloy bearing Fe for electronics applications[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2012, 551: 160 − 168. doi: 10.1016/j.msea.2012.04.115
|
El-Daly A A, Fawzy A, Mansour S F, et al. Thermal analysis and mechanical properties of Sn-1.0Ag-0.5Cu solder alloy after modification with SiC nano-sized particles[J]. Journal of Materials Science: Materials in Electronics, 2013, 24(8): 2976 − 2988. doi: 10.1007/s10854-013-1200-8
|
Qu J F , Xu J, Hu Q, et al. Modification of Sn-1.0Ag-0.5Cu solder using nickel and boron[J]. Rare Metals, 2015, 34(11): 783 − 788. doi: 10.1007/s12598-014-0221-7
|
王丽凤, 孙凤莲, 刘晓晶, 等. Sn-Ag-Cu-Bi钎料合金设计与组织性能分析[J]. 焊接学报, 2008, 29(7): 9 − 12. doi: 10.3321/j.issn:0253-360X.2008.07.003
Wang Lifeng, Sun Fenglian, Liu Xiaojing, et al. Design of Sn-Ag-Cu-Bi solder alloy and analysis on microstructure and properties[J]. Transactions of the China Welding Institution, 2008, 29(7): 9 − 12. doi: 10.3321/j.issn:0253-360X.2008.07.003
|
Wen Y N, Zhao X C, Chen Z, et al. Reliability enhancement of Sn-1.0Ag-0.5Cu nano-composite solders by adding multiple sizes of TiO2 nanoparticles[J]. Journal of Alloys and Compounds, 2017, 696: 799 − 807. doi: 10.1016/j.jallcom.2016.12.037
|
Shnawah A A, Sabri M F M, Badruddin I A, et al. The bulk alloy microstructure and mechanical properties of Sn-1Ag-0.5Cu-xAl solders (x=0, 0.1 and 0.2 wt. %)[J]. Journal of Materials Science Materials in Electronics, 2012, 23(11): 1988 − 1997. doi: 10.1007/s10854-012-0692-y
|
Cheng H K, Huang C W, Lee H, et al. Interfacial reactions between Cu and SnAgCu solder doped with minor Ni[J]. Journal of Alloys and Compounds, 2015, 622: 529 − 534. doi: 10.1016/j.jallcom.2014.10.121
|
Leong Y M, Haseeb A. Soldering characteristics and mechanical properties of Sn-1.0Ag-0.5Cu solder with minor aluminum addition[J]. Materials, 2016, 9(7): 522. doi: 10.3390/ma9070522
|
吴洁, 薛松柏, 于志浩, 等. Nd对Sn-3.8Ag-0.7Cu/Cu焊点高温可靠性的影响[J]. 焊接学报, 2021, 42(7): 9 − 13. doi: 10.12073/j.hjxb.20201211002
Wu Jie, Xue Songbai, Yu Zhihao, et al. Effect of Nd on the high temperature reliability of Sn-3.8Ag-0.7Cu/Cu solder joint[J]. Transactions of the China Welding Institution, 2021, 42(7): 9 − 13. doi: 10.12073/j.hjxb.20201211002
|
梁伟良, 薛鹏, 何鹏, 等. 超低银SAC钎料焊点界面显微组织演化[J]. 焊接学报, 2018, 39(11): 39 − 42. doi: 10.12073/j.hjxb.2018390269
Liang Weiliang, Xue Peng, He Peng, et al. Microstructures evolution of low silver SnAgCu solder joint[J]. Transactions of the China Welding Institution, 2018, 39(11): 39 − 42. doi: 10.12073/j.hjxb.2018390269
|
Leong Y M, Haseeb A, Nishikawa H, et al. Microstructure and mechanical properties of Sn-1.0Ag-0.5Cu solder with minor Zn additions[J]. Journal of Materials Science Materials in Electronics, 2019, 30(13): 11914 − 11922. doi: 10.1007/s10854-019-01532-5
|
Mandavifard M H, Sabri M, Said S M, et al. High stability and aging resistance Sn-1Ag-0.5Cu solder alloy by Fe and Bi minor alloying[J]. Microelectronic Engineering, 2019, 208: 29 − 38. doi: 10.1016/j.mee.2019.01.011
|
孟涛, 杨莉. Bi元素对SAC305钎料合金组织和性能的影响[J]. 热加工工艺, 2015, 44(7): 209 − 211. doi: 10.14158/j.cnki.1001-3814.2015.07.062
Meng Tao, Yang Li. Effect of Bi element on microstructure and property of SAC305 solder alloy[J]. Hot Working Technology, 2015, 44(7): 209 − 211. doi: 10.14158/j.cnki.1001-3814.2015.07.062
|
Chen Y, Meng Z C, Gao L Y, et al. Effect of Bi addition on the shear strength and failure mechanism of low-Ag lead-free solder joints[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(2): 2172 − 2186. doi: 10.1007/s10854-020-04982-4
|
Waduge G D, Baty G, Lee Y, et al. Isothermal aging effect on Sn-58Bi solder interconnect mechanical shear stability[J]. Journal of Electronic Materials, 2022, 51(3): 1169 − 1179. doi: 10.1007/s11664-021-09379-5
|
Shang P J, Liu Z Q, Li D X, et al. Bi-induced voids at the Cu3Sn/Cu interface in eutectic SnBi/Cu solder joints[J]. Scripta Materialia, 2008, 58(5): 409 − 412. doi: 10.1016/j.scriptamat.2007.10.025
|
Liu C Z, Zhang W. Bismuth redistribution induced by intermetallic compound growth in SnBi/Cu microelectronic interconnect[J]. Journal of Materials Science, 2009, 44(1): 149 − 153. doi: 10.1007/s10853-008-3118-8
|
Kang T Y, Xiu Y Y, Liu C Z, et al. Bismuth segregation enhances intermetallic compound growth in SnBi/Cu microelectronic interconnect[J]. Journal of Alloys and Compounds, 2011, 509(5): 1785 − 1789. doi: 10.1016/j.jallcom.2010.10.040
|
[1] | LIU Wenjing, HU Jianhua, ZHANG Yikun, XIE Zuopeng. Effect of field-shaper structure on magnetic pulse-assisted semi-solid brazing process of Cu/Al tubes joining[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 59-68. DOI: 10.12073/j.hjxb.20231221001 |
[2] | YU Zhangqin, HU Jianhua, YANG Zheng, HUANG Shangyu. Interfacial diffusion process of Cu/Al magnetic pulse semi-solid assisted brazing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 120-128. DOI: 10.12073/j.hjxb.20211221001 |
[3] | DENG Lingbo, HUANG Shangyu, YANG Mei, QIAN Dongsheng, FENG Ke, OU Bing. Effect of field shaper structure on microstructure and properties of magnetic pulse assisted semi-solid brazing joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 48-54. DOI: 10.12073/j.hjxb.20210513001 |
[4] | LI Juan, QIN Qingdong, LONG Qiong, ZHANG Yingzhe. Influence of the filler metals' forms on semi-solid pressure reaction brazing joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 139-144. DOI: 10.12073/j.hjxb.2019400250 |
[5] | YANG Jingwei1, CAO Biao2, LU Qinghua1. Investigation on the interfacial behavior of hybrid ultrasonic resistance welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 26-30. DOI: 10.12073/j.hjxb.2018390062 |
[6] | ZHANG Qingke, ZHONG Sujuan, ZHANG Lei, LONG Weimin, WANG Dezhi. Investigation on interfacial reaction behavior of brazed joint of austenitic stainless steel/Cu filler metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(3): 75-78. |
[7] | WANG Chenxi, AN Rong, TIAN Yanhong, WANG Chunqing. Interfacial behavior between silver-plated copper wire and PCB pad during parallel micro gap welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(11): 55-58. |
[8] | LÜ Shixiong, CUI Qinglong, HUANG Yongxian, JING Xiaojun. Analysis of interface fracture behavior of arc fusion-brazed joint between titanium and aluminum dissimilar alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (6): 33-36. |
[9] | XU Huibin, YAN Jiuchun, LI Dachen, YANG Shiqin. Semi-solid vibration diffusion brazing of SiCp ZL101A composites[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (5): 13-17. |
[10] | LIU Jun-hong, SUN Kang-ning, GONG Hong-yu, TAN Xun-yan. Interfacial microstructure of Al2O3-based ceramic composite/steel joint by brazing in air[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (6): 26-28. |
1. |
曾邦兴,胡永俊,邹晓东,牛犇,易江龙. 保护气体对(Nb, Ti)C增强铁基复合堆焊层组织与性能的影响. 焊接. 2022(06): 33-41 .
![]() | |
2. |
魏炜,黄智泉,杨威,张海燕. Fe/C配比对等离子堆焊Fe-Cr-C合金组织及性能的影响. 电焊机. 2022(11): 37-42 .
![]() |