Advanced Search
ZHOU Xiangman, FU Zichuan, BAI Xingwang, TIAN Qihua, FANG Dong, FU Junjian, ZHANG Haiou. Numerical simulation of the effect of wire feeding speed on the molten pool flow and weld bead morphology of WAAM[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 109-116. DOI: 10.12073/j.hjxb.20220603001
Citation: ZHOU Xiangman, FU Zichuan, BAI Xingwang, TIAN Qihua, FANG Dong, FU Junjian, ZHANG Haiou. Numerical simulation of the effect of wire feeding speed on the molten pool flow and weld bead morphology of WAAM[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 109-116. DOI: 10.12073/j.hjxb.20220603001

Numerical simulation of the effect of wire feeding speed on the molten pool flow and weld bead morphology of WAAM

More Information
  • Received Date: June 02, 2022
  • Available Online: April 07, 2023
  • The heat and mass transfer and molten pool flow in single-pass deposition of wire arc additive manufacturing (WAAM) were studied using numerical simulation, and the influence of wire feeding speed on weld bead morphology was analyzed. The results show that when the wire feeding speed is low, the substrate receives more arc heat, the molten pool has deeper penetration and stronger fluidity, and the weld bead width is wide with a low height. As the wire feeding speed increases, the molten metal accumulates upward, and the molten pool volume increases. When the wire feeding speed reaches a certain value, the electromagnetic force and surface tension achieve a dynamic balance, and the molten pool penetration approaches the weld bead height. At higher wire feed speeds, molten pool convection tends to weaken, and penetration becomes shallow. Under the action of surface tension, edge shrinkage of the weld pool leads to weld bead bumps. The simulated single-bead cross-sectional profile agrees well with experimental results and can provide theoretical bases for controlling process parameters in gas tungsten arc welding-based additive manufacturing technology.
  • 黄勇, 王新鑫, 瞿怀宇, 等. 工艺参数对耦合AA-TIG焊电弧阳极电流密度的影响[J]. 焊接学报, 2014, 35(2): 5 − 9.

    Huang Yong, Wang Xinxin, Qu huaiyu, et al. Effects of arc parameters on arc anode current density of coupling AA-TIG arc[J]. Transactions of the China Welding Institution, 2014, 35(2): 5 − 9.
    张栋, 陈茂爱, 武传松, 等. 高速CMT焊送丝速度和焊接电流波形参数的优化[J]. 焊接学报, 2018, 39(1): 119 − 122.

    Zhang Dong, Chen Maoai, Wu Chuansong, et al. Optimization of waveform parameters for high speed CMT welding of steel[J]. Transactions of the China Welding Institution, 2018, 39(1): 119 − 122.
    Li A, Liu X, Yu B. Influence mechanism of processing parameters on size uniformity of 7075 aluminum alloy single tracks during liquid metal flow rapid cooling additive manufacturing[J]. Journal of Manufacturing Processes, 2020, 59: 258 − 265. doi: 10.1016/j.jmapro.2020.09.074
    Wang L, Chen J, Zhang S, et al. Numerical simulation of coupled arc-droplet-weld pool behaviors during compound magnetic field assisted gas metal arc welding[J]. AIP Advances, 2021, 11(6): 65221. doi: 10.1063/5.0049461
    丁雪萍, 李桓. 焊接电流影响GMAW双丝焊电弧等离子体的数值模拟研究[J]. 机械工程学报, 2016, 52(16): 71 − 76.

    Ding Xueping, Li Huan. Numerical analysis for effect of welding current on arc plasma in double-wire GMAW[J]. Journal of Mechanical Engineering, 2016, 52(16): 71 − 76.
    郭力玮, 黄继强, 冯音琦, 等. 环境压力对GMAW电弧能量耗散的影响[J]. 焊接学报, 2022, 43(2): 61 − 66. doi: 10.12073/j.hjxb.20210609003

    Guo Liwei, Huang Jiqiang, Feng Yinqi, et al. Effect of ambient pressure on energy dissipation of GMAW arc[J]. Transactions of the China Welding Institution, 2022, 43(2): 61 − 66. doi: 10.12073/j.hjxb.20210609003
    Wang X, Fan D, Huang J, et al. A unified model of coupled arc plasma and weld pool for double electrodes TIG welding[J]. Journal of Physics D:Applied Physics, 2014, 47(27): 275002.
    Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201 − 225. doi: 10.1016/0021-9991(81)90145-5
    Ni M, Qin X, Hu Z, et al. Forming characteristics and control method of weld bead for GMAW on curved surface[J]. Advanced Manufacturing Technology, 2021, 119(3-4): 1883 − 1908.
    Bai X, Colegrove P, Ding J, et al. Numerical analysis of heat transfer and fluid flow in multilayer deposition of PAW-based wire and arc additive manufacturing[J]. International Journal of Heat and Mass Transfer, 2018, 124: 504 − 516. doi: 10.1016/j.ijheatmasstransfer.2018.03.085
    Hu Z, Hua L, Qin X, et al. Molten pool behaviors and forming appearance of robotic GMAW on complex surface with various welding positions[J]. Journal of Manufacturing Processes, 2021, 64: 1359 − 1376. doi: 10.1016/j.jmapro.2021.02.061
    周祥曼, 王礴允, 袁有录, 等. 焊接速度对电弧增材熔池流动及焊道形貌影响的数值模拟研究[J]. 机械工程学报, 2022, 58(10): 103 − 111.

    Zhou Xiangman, Wang Boyun, Yuan Youlu, et al. Numerical Simulation Study of the Effects of Travel Speed on the Molten Pool Flow and Weld Bead Morphology of WAAM[J]. Journal of Mechanical Engineering, 2022, 58(10): 103 − 111.
    Tanaka M, Terasaki H, Ushio M, et al. A unified numerical modeling of stationary tungsten-inert-gas welding process[J]. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 2002, 33(7): 2043 − 2052. doi: 10.1007/s11661-002-0036-2
    周祥曼, 刘练, 陈永清, 等. 外加变位磁场作用GTAW焊接电弧的数值模拟[J]. 三峡大学学报(自然科学版), 2021, 43(5): 101 − 106. doi: 10.13393/j.cnki.issn.1672-948x.2021.05.017

    Zhou Xiangman, Liu Lian, Chen Yongqing, et al. Numerical simulation of GTAW welding arc under the external static magnetic field of changing position[J]. Journal of China Three Gorges University (Natural Sciences), 2021, 43(5): 101 − 106. doi: 10.13393/j.cnki.issn.1672-948x.2021.05.017
    Ji F, Qin X, Hu Z, et al. Influence of ultrasonic vibration on molten pool behavior and deposition layer forming morphology for wire and arc additive manufacturing[J]. International Communications in Heat and Mass Transfer, 2022, 130: 105789. doi: 10.1016/j.icheatmasstransfer.2021.105789
    Cho D W, Na S J, Cho M H, et al. A study on V-groove GMAW for various welding positions[J]. Journal of Materials Processing Technology, 2013, 213(9): 1640 − 1652. doi: 10.1016/j.jmatprotec.2013.02.015
  • Related Articles

    [1]LI Zhao, LIU Yang, ZHANG Hao, SUN Fenglian. Bonding strength and plasticity of multiscale composite nanosilver paste for low temperature sintering[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 106-110. DOI: 10.12073/j.hjxb.2019400271
    [2]LI Haixin, WEI Hongmei, HE Peng, FENG Jicai. Interfacial microstructure and bonding strength of diffusion bonded TiAl/Ti/Nb/GH99 alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (9): 9-12.
    [3]LI Haixin, LIN Tiesong, HE Peng, WEI Hongmei, FENG Jicai. Effect of holding time on interface structure and bonding strength of diffusion bonding joint of TiAl and Ni-based alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (6): 43-46.
    [4]HE Peng, YANG Xiujuan, FENG Jicai, LIU Hong. Effects of holding time on interface structure and bonding strength of brazed joint of hydrogenated TC4 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (2): 1-4.
    [5]WANG Fu-liang, LI Jun-hui, HAN Lei, ZHONG Jue. Effect of bonding time on thick aluminum wire wedge bonding strength[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (5): 47-51.
    [6]QIU Chang-jun, ZHOU Wei, HE Bin, FAN Xiang-fang. Study and finite element method analysis for bond strength of high-strength coating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (4): 105-107.
    [7]FENG Ji-cai, JING Xiang-meng, ZHANG Li-xia, LIU Hong. Interface structure and bonding strength of brazed joint of TiC cermet/steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (1): 5-8.
    [8]LONG Zhi-li, HAN lei, WU Yun-xin, ZHOU Hong-quan. Effect of different temperature on strength of thermosonic bonding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (8): 23-26,38.
    [9]ZOU Jia-sheng, XU Zhi-rong, ZHAO Qi-zhang, CHEN Zheng. Bonding strength of double partial transient liquid phase bonding with Si3N4/Ti/Cu/Ni/Cu/Ti/Si3N4[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (2): 41-44.
    [10]Liu Huijie, Feng Jicai, Qian Yiyu. Interface Structures and Bonding Strength of SiC/TiAl Joints in Diffusion Bonding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (3): 170-174.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (432) PDF downloads (97) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return