Advanced Search
CHENG Hongbei, CAO Rui, YANG Fei, XU Xiaolong, JIA Xingwang, JIANG Yong. Effect of post welding heat treatment on corrosion behavior of NiCrMo-3 deposited metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 32-39. DOI: 10.12073/j.hjxb.20220905001
Citation: CHENG Hongbei, CAO Rui, YANG Fei, XU Xiaolong, JIA Xingwang, JIANG Yong. Effect of post welding heat treatment on corrosion behavior of NiCrMo-3 deposited metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 32-39. DOI: 10.12073/j.hjxb.20220905001

Effect of post welding heat treatment on corrosion behavior of NiCrMo-3 deposited metal

More Information
  • Received Date: September 04, 2022
  • Available Online: July 17, 2023
  • In this paper, the difference of corrosion resistance for NiCrMo-3 deposited metal with as-welded and as-PWHT (post welding heat treatment) at 690 ℃ for 8 h was investigated by scanning electron microscope, transmission electron microscopy and other characterization methods. The results show that the as-welded specimens have better intergranular corrosion resistance than that of as-PWHT specimens. Pitting corrosion and intergranular corrosion occur when the specimens were immersed in HNO3 solution for different times. In addition to pitting corrosion and intergranular corrosion, partial inter-dendrite corrosion occurs in as-PWHT deposited metal. The increase of the number and size of NbC and Laves phase leads to the increase of corrosion sensitivity of the specimens after heat treatment. The potential difference between precipitated phase NbC, Laves phase and matrix leads to pitting corrosion under the action of corrosive medium. The contents of Ni and Cr elements decrease due to grain boundary precipitates, which increased the intergranular corrosion sensitivity of deposited metal. After heat treatment, the elements redistribution leads to the enrichment of Nb, Mo elements and depletion of Ni, Cr elements, resulting in inter-dendrite corrosion.
  • Sims C T, Stoloff N S, Hagel W C. Superalloys II[M]. New York: Wiley, 1987.
    Xu Tao, Wang Zishun, Shi Yonghua. Investigation of C276 alloy and 316L SS TIG welded joints with ERNiCrMo-4 and ER304 welding wires[J]. China Welding, 2021, 30(4): 9 − 16.
    Wang L, Li H, Liu Q, et al. Effect of sodium chloride on the electrochemical corrosion of Inconel 625 at high temperature and pressure[J]. Journal of Alloys & Compounds, 2017, 703: 523 − 529.
    Abioye T E, Mccartney D G, Clare A T. Laser cladding of Inconel 625 wire for corrosion protection[J]. Journal of Materials Processing Technology, 2014, 217: 232 − 240.
    Fesharaki M N, Shoja-Razavi R, Mansouri H A, et al. Evaluation of the hot corrosion behavior of Inconel625 coatings on the Inconel 738 substrate by laser and TIG cladding techniques[J]. Optics & Laser Technology, 2019, 111: 744 − 753.
    Guo L. Effect of heat treatment temperatures on microstructure and corrosion properties of Inconel 625 weld overlay deposited by PTIG[J]. International Journal of Electrochemical Science, 2016, 97: 5507 − 5519.
    Lemos G V B, Farina A B, Nunes R M, et al. Residual stress characterization in friction stir welds of alloy 625[J]. Journal of Materials Research and Technology, 2019, 8(1): 2528 − 2537.
    Guo L, Xiao F, Wang F, et al. Influence of heat treatments on microstructure, mechanical properties and corrosion resistance of Inconel 625 overlay cladded using PTIG[J]. Materials Research Express, 2020, 7(9): 096517. doi: 10.1088/2053-1591/abb858
    Song K H, Nakata K. Effect of precipitation on post-heat-treated Inconel 625 alloy after friction stir welding[J]. Materials & Design, 2010, 31(6): 2942 − 2947.
    Marchese G, Lorusso M, Parizia S, et al. Influence of heat treatments on microstructure evolution and mechanical properties of Inconel 625 processed by laser powder bed fusion[J]. Materials Science & Engineering: A, 2018, 729: 64 − 75. doi: 10.1016/j.msea.2018.05.044
    Mittra J, Banerjee S, Tewari R, et al. Fracture behavior of Alloy 625 with different precipitate microstructures[J]. Materials Science & Engineering: A, 2013, 574: 86 − 93.
    郭枭, 徐锴, 霍树斌, 等. 镍基合金焊丝GTAW熔敷金属凝固偏析行为[J]. 焊接学报, 2019, 40(7): 105 − 108.

    Guo Xiao, Xu Kai, Huo Shubin, et al. Investigation on the solidification segregation behavior of GTAW nickel alloy deposited metal[J]. Transactions of the China Welding Institution, 2019, 40(7): 105 − 108.
    Je S G, Kim D H, Yoo S C, et al. Asymmetric magnetic domain-wall motion by the Dzyaloshinskii-Moriya interaction[J]. Physical Review B, 2013, 88(21): 214401. doi: 10.1103/PhysRevB.88.214401
    Mathew M. D, Parameswaran P, Rao K. Microstructural changes in alloy 625 during high temperature creep[J]. Materials Characterization, 2008, 59(5): 508 − 513. doi: 10.1016/j.matchar.2007.03.007
    Qi H, Azer M, Ritter A. Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured Inconel 718[J]. Metallurgical and Materials Transactions A, 2009, 40(10): 2410 − 2422.
    Shimada M, Kokawa H, Wang Z J, et al. Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-induced grain boundary engineering[J]. Acta Materialia, 2002, 50(9): 2331 − 2341. doi: 10.1016/S1359-6454(02)00064-2
    Kobayashi S, Kobayashi R, Watanabe T. Control of grain boundary connectivity based on fractal analysis for improvement of intergranular corrosion resistance in SUS316L austenitic stainless steel[J]. Acta Materialia, 2016, 102: 397 − 405. doi: 10.1016/j.actamat.2015.08.075
    Xu L, Zhang J, Han Y, et al. Insights into the intergranular corrosion of overlay welded joints of X65-Inconel 625 clad pipe and its relationship to damage penetration[J]. Corrosion Science, 2019, 160: 108169.
    Lin P, Palumbo G, Erb U, et al. Influence of grain boundary character distribution on sensitization and intergranular corrosion of alloy 600[J]. Scripta Metallurgica Et Materialia, 1995, 33(9): 1387 − 1392. doi: 10.1016/0956-716X(95)00420-Z
    Kjc A, Scy B, Sk C, et al. Microstructural evolution and corrosion behaviour of thermally aged dissimilar metal welds of low-alloy steel and nickel-based alloy[J]. Corrosion Science, 2019, 153: 138 − 149. doi: 10.1016/j.corsci.2019.03.032
    Zhang S, Li H, Jiang Z, et al. Effects of Cr and Mo on precipitation behavior and associated intergranular corrosion susceptibility of super austenitic stainless steel S32654[J]. Materials Characterization, 2019, 152: 141 − 150. doi: 10.1016/j.matchar.2019.04.010
    Xing X, Di X, Wang B. The effect of post-weld heat treatment temperature on the microstructure of Inconel 625 deposited metal[J]. Journal of Alloys & Compounds, 2014, 593: 110 − 116. doi: 10.1016/j.jallcom.2013.12.224
    Guo L, Xiao F, Wang F, et al. Effect of post-weld heat treatment temperatures on microstructure, intergranular corrosion resistance, and mechanical properties of 4130 steel with Inconel 625 weld overlay[J]. Journal of Failure Analysis and Prevention, 2021, 21(5): 1775 − 1783.
    Rajani H, Mousavi S, Sani F M. Comparison of corrosion behavior between fusion cladded and explosive cladded Inconel 625/plain carbon steel bimetal plates[J]. Materials & Design, 2013, 43(1): 467 − 474.
    Zhao P. Application of molybdenum in stainless steel[J]. China Molybdenum Industry, 2004, 28(5): 3 − 10.
    Peng Q J, Yamauchi H, Shoji T. Investigation of dendrite-boundary microchemistry in alloy 182 using auger electron spectroscopy analysis[J]. Metallurgical and Materials Transactions A, 2003, 34(9): 1891 − 1899.
  • Related Articles

    [1]LI YuLong, SONG ZiMing, WU Qi, LIN Wei, ZHANG Lin, PAN Pan, LEI Min. Analysis of the microstructure and mechanical properties of the interface between diamond and oxygen free copper brazing joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION.
    [2]QIAO Lixue, YU Gang, DONG Hao, CAO Rui, CHE Hongyan, WANG Tiejun. Effect of heat treatment process on microstructure and mechanical properties of M390/304 CMT welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 49-56. DOI: 10.12073/j.hjxb.20220325011
    [3]TAO Yong, WANG Rui, SONG Kuijing, LIU Dashuang, ZHONG Zhihong, WU Yucheng. Interfacial microstructure and mechanical properties of B4C matrix composite joints diffusion bonded with Ti interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 29-35. DOI: 10.12073/j.hjxb.20210802001
    [4]LI Huan, ZHOU Kang, ZHANG Jinzhou, YANG Xiong, CAO Biao. Influence of process parameters on microstructure and mechanical properties in high power ultrasonic welding of Cu/Al[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 20-25. DOI: 10.12073/j.hjxb.20191029002
    [5]WANG Haiyan, NIU Chunju, CUI Guotao, ZHAI Haizhou. Study of microstructure and properties of TP304/SS400 dissimilar welding joints under three processes[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 131-136. DOI: 10.12073/j.hjxb.2019400140
    [6]ZHANG Chuanchen, ZHANG Tiancang, LIU Ying. Cycle fatigue properties of TA15 titanium alloy linear friction welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 105-108. DOI: 10.12073/j.hjxb.2018390133
    [7]XUE Zhiqing, HU Shengsun, ZUO Di, SHEN Junqi. Microstructural characteristics and mechanical properties of laser-welded copper and aluminum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (10): 51-54.
    [8]CHEN Guoqing, ZHANG Binggang, WANG Ting, FENG Jicai. Microstructure and mechanical properties of submerged arc welded TA15 titanium alloy joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (7): 5-8.
    [9]YAN Keng, FENG Xinmei, ZHAO Yong, CAO Liang. Influences of processing parameters on mechanical properties of com-stir friction stir spot welding joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (6): 5-8.
    [10]WANG Li-fa, LIU Jian-zhong, HU Ben-run. Mechanical properties of TA15 titanium alloy electron beam welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (1): 97-100.

Catalog

    Article views (147) PDF downloads (38) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return