Citation: | CHENG Hongbei, CAO Rui, YANG Fei, XU Xiaolong, JIA Xingwang, JIANG Yong. Effect of post welding heat treatment on corrosion behavior of NiCrMo-3 deposited metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 32-39. DOI: 10.12073/j.hjxb.20220905001 |
Sims C T, Stoloff N S, Hagel W C. Superalloys II[M]. New York: Wiley, 1987.
|
Xu Tao, Wang Zishun, Shi Yonghua. Investigation of C276 alloy and 316L SS TIG welded joints with ERNiCrMo-4 and ER304 welding wires[J]. China Welding, 2021, 30(4): 9 − 16.
|
Wang L, Li H, Liu Q, et al. Effect of sodium chloride on the electrochemical corrosion of Inconel 625 at high temperature and pressure[J]. Journal of Alloys & Compounds, 2017, 703: 523 − 529.
|
Abioye T E, Mccartney D G, Clare A T. Laser cladding of Inconel 625 wire for corrosion protection[J]. Journal of Materials Processing Technology, 2014, 217: 232 − 240.
|
Fesharaki M N, Shoja-Razavi R, Mansouri H A, et al. Evaluation of the hot corrosion behavior of Inconel625 coatings on the Inconel 738 substrate by laser and TIG cladding techniques[J]. Optics & Laser Technology, 2019, 111: 744 − 753.
|
Guo L. Effect of heat treatment temperatures on microstructure and corrosion properties of Inconel 625 weld overlay deposited by PTIG[J]. International Journal of Electrochemical Science, 2016, 97: 5507 − 5519.
|
Lemos G V B, Farina A B, Nunes R M, et al. Residual stress characterization in friction stir welds of alloy 625[J]. Journal of Materials Research and Technology, 2019, 8(1): 2528 − 2537.
|
Guo L, Xiao F, Wang F, et al. Influence of heat treatments on microstructure, mechanical properties and corrosion resistance of Inconel 625 overlay cladded using PTIG[J]. Materials Research Express, 2020, 7(9): 096517. doi: 10.1088/2053-1591/abb858
|
Song K H, Nakata K. Effect of precipitation on post-heat-treated Inconel 625 alloy after friction stir welding[J]. Materials & Design, 2010, 31(6): 2942 − 2947.
|
Marchese G, Lorusso M, Parizia S, et al. Influence of heat treatments on microstructure evolution and mechanical properties of Inconel 625 processed by laser powder bed fusion[J]. Materials Science & Engineering: A, 2018, 729: 64 − 75. doi: 10.1016/j.msea.2018.05.044
|
Mittra J, Banerjee S, Tewari R, et al. Fracture behavior of Alloy 625 with different precipitate microstructures[J]. Materials Science & Engineering: A, 2013, 574: 86 − 93.
|
郭枭, 徐锴, 霍树斌, 等. 镍基合金焊丝GTAW熔敷金属凝固偏析行为[J]. 焊接学报, 2019, 40(7): 105 − 108.
Guo Xiao, Xu Kai, Huo Shubin, et al. Investigation on the solidification segregation behavior of GTAW nickel alloy deposited metal[J]. Transactions of the China Welding Institution, 2019, 40(7): 105 − 108.
|
Je S G, Kim D H, Yoo S C, et al. Asymmetric magnetic domain-wall motion by the Dzyaloshinskii-Moriya interaction[J]. Physical Review B, 2013, 88(21): 214401. doi: 10.1103/PhysRevB.88.214401
|
Mathew M. D, Parameswaran P, Rao K. Microstructural changes in alloy 625 during high temperature creep[J]. Materials Characterization, 2008, 59(5): 508 − 513. doi: 10.1016/j.matchar.2007.03.007
|
Qi H, Azer M, Ritter A. Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured Inconel 718[J]. Metallurgical and Materials Transactions A, 2009, 40(10): 2410 − 2422.
|
Shimada M, Kokawa H, Wang Z J, et al. Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-induced grain boundary engineering[J]. Acta Materialia, 2002, 50(9): 2331 − 2341. doi: 10.1016/S1359-6454(02)00064-2
|
Kobayashi S, Kobayashi R, Watanabe T. Control of grain boundary connectivity based on fractal analysis for improvement of intergranular corrosion resistance in SUS316L austenitic stainless steel[J]. Acta Materialia, 2016, 102: 397 − 405. doi: 10.1016/j.actamat.2015.08.075
|
Xu L, Zhang J, Han Y, et al. Insights into the intergranular corrosion of overlay welded joints of X65-Inconel 625 clad pipe and its relationship to damage penetration[J]. Corrosion Science, 2019, 160: 108169.
|
Lin P, Palumbo G, Erb U, et al. Influence of grain boundary character distribution on sensitization and intergranular corrosion of alloy 600[J]. Scripta Metallurgica Et Materialia, 1995, 33(9): 1387 − 1392. doi: 10.1016/0956-716X(95)00420-Z
|
Kjc A, Scy B, Sk C, et al. Microstructural evolution and corrosion behaviour of thermally aged dissimilar metal welds of low-alloy steel and nickel-based alloy[J]. Corrosion Science, 2019, 153: 138 − 149. doi: 10.1016/j.corsci.2019.03.032
|
Zhang S, Li H, Jiang Z, et al. Effects of Cr and Mo on precipitation behavior and associated intergranular corrosion susceptibility of super austenitic stainless steel S32654[J]. Materials Characterization, 2019, 152: 141 − 150. doi: 10.1016/j.matchar.2019.04.010
|
Xing X, Di X, Wang B. The effect of post-weld heat treatment temperature on the microstructure of Inconel 625 deposited metal[J]. Journal of Alloys & Compounds, 2014, 593: 110 − 116. doi: 10.1016/j.jallcom.2013.12.224
|
Guo L, Xiao F, Wang F, et al. Effect of post-weld heat treatment temperatures on microstructure, intergranular corrosion resistance, and mechanical properties of 4130 steel with Inconel 625 weld overlay[J]. Journal of Failure Analysis and Prevention, 2021, 21(5): 1775 − 1783.
|
Rajani H, Mousavi S, Sani F M. Comparison of corrosion behavior between fusion cladded and explosive cladded Inconel 625/plain carbon steel bimetal plates[J]. Materials & Design, 2013, 43(1): 467 − 474.
|
Zhao P. Application of molybdenum in stainless steel[J]. China Molybdenum Industry, 2004, 28(5): 3 − 10.
|
Peng Q J, Yamauchi H, Shoji T. Investigation of dendrite-boundary microchemistry in alloy 182 using auger electron spectroscopy analysis[J]. Metallurgical and Materials Transactions A, 2003, 34(9): 1891 − 1899.
|
[1] | LI YuLong, SONG ZiMing, WU Qi, LIN Wei, ZHANG Lin, PAN Pan, LEI Min. Analysis of the microstructure and mechanical properties of the interface between diamond and oxygen free copper brazing joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. |
[2] | QIAO Lixue, YU Gang, DONG Hao, CAO Rui, CHE Hongyan, WANG Tiejun. Effect of heat treatment process on microstructure and mechanical properties of M390/304 CMT welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 49-56. DOI: 10.12073/j.hjxb.20220325011 |
[3] | TAO Yong, WANG Rui, SONG Kuijing, LIU Dashuang, ZHONG Zhihong, WU Yucheng. Interfacial microstructure and mechanical properties of B4C matrix composite joints diffusion bonded with Ti interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 29-35. DOI: 10.12073/j.hjxb.20210802001 |
[4] | LI Huan, ZHOU Kang, ZHANG Jinzhou, YANG Xiong, CAO Biao. Influence of process parameters on microstructure and mechanical properties in high power ultrasonic welding of Cu/Al[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 20-25. DOI: 10.12073/j.hjxb.20191029002 |
[5] | WANG Haiyan, NIU Chunju, CUI Guotao, ZHAI Haizhou. Study of microstructure and properties of TP304/SS400 dissimilar welding joints under three processes[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 131-136. DOI: 10.12073/j.hjxb.2019400140 |
[6] | ZHANG Chuanchen, ZHANG Tiancang, LIU Ying. Cycle fatigue properties of TA15 titanium alloy linear friction welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 105-108. DOI: 10.12073/j.hjxb.2018390133 |
[7] | XUE Zhiqing, HU Shengsun, ZUO Di, SHEN Junqi. Microstructural characteristics and mechanical properties of laser-welded copper and aluminum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (10): 51-54. |
[8] | CHEN Guoqing, ZHANG Binggang, WANG Ting, FENG Jicai. Microstructure and mechanical properties of submerged arc welded TA15 titanium alloy joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (7): 5-8. |
[9] | YAN Keng, FENG Xinmei, ZHAO Yong, CAO Liang. Influences of processing parameters on mechanical properties of com-stir friction stir spot welding joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (6): 5-8. |
[10] | WANG Li-fa, LIU Jian-zhong, HU Ben-run. Mechanical properties of TA15 titanium alloy electron beam welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (1): 97-100. |