Citation: | ZHANG Wei, LIU Feng, LI Xiangbo, CHENG Xudong, SU Yan, SHAO Gangqin. Influence of weld reinforcements on corrosion behavior of Cu-Ni alloy pipe[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 115-121. DOI: 10.12073/j.hjxb.20220302001 |
张文毓. 船舶海水管系腐蚀与防护[J]. 船舶物资与市场, 2019, 10: 11 − 16. doi: 10.3969/j.issn.1006-6969.2019.05.012
Zhang Wenyu. Corrosion and protection of marine pipelines[J]. Marine Equipment, 2019, 10: 11 − 16. doi: 10.3969/j.issn.1006-6969.2019.05.012
|
姬升阳, 王长罡, 蔡伟, 等. 溪洛渡水电站铜镍合金冷却器腐蚀机理研究[J]. 水电站机电技术, 2019, 42(7): 71 − 75. doi: 10.13599/j.cnki.11-5130.2019.07.019
Ji Shengyang, Wang Changgang, Cai Wei, et al. Research on corrosion mechanism of copper-nickel alloy cooler of Xiluodu hydropower station[J]. Mechanical Electrical Technique of Hydropower Station, 2019, 42(7): 71 − 75. doi: 10.13599/j.cnki.11-5130.2019.07.019
|
Jin T, Zhang W, Li N, et al. Surface characterization and corrosion behavior of 90/10 copper-nickel alloy in marine environment[J]. Materials, 2019, 12(11): 1869 − 1873. doi: 10.3390/ma12111869
|
Ahmed W H, Bello M M, El Nakla M, et al. Flow and mass transfer downstream of an orifice under flow accelerated corrosion conditions[J]. Nuclear Engineering and Design, 2012, 252: 52 − 67. doi: 10.1016/j.nucengdes.2012.06.033
|
Si X, Si H, Li M, et al. Investigation of corrosion behavior at elbow by array electrode and computational fluid dynamics simulation[J]. Materials and Corrosion, 2020, 71(10): 1637 − 1650. doi: 10.1002/maco.201911373
|
Gu Y, Xiao F, Zhou Y, et al. Behaviors of embrittlement and softening in heat affected zone of high strength X90 pipeline steels[J]. Soldagem & Inspecao, 2019, 24(1): 13 − 22.
|
Zhang Y, Feng X, Song C, et al. Quantification of grain boundary connectivity for predicting intergranular corrosion resistance in BFe10-1-1 copper-nickel alloy[J]. MRS Communications, 2019, 9(1): 251 − 257. doi: 10.1557/mrc.2018.211
|
Sun B, Ye T, Feng Q, et al. Accelerated degradation test and predictive failure analysis of B10 copper-nickel alloy under marine environmental conditions[J]. Materials, 2015, 8(9): 6029 − 6042. doi: 10.3390/ma8095290
|
魏仁超, 许凤玲, 蔺存国, 等. 远青弧菌、硫酸盐还原菌及其混合菌种作用下B10合金的海水腐蚀行为[J]. 金属学报, 2014, 50(12): 1461 − 1470. doi: 10.11900/0412.1961.2014.00204
Wei Renchao, Xu Fengling, Lin Cunguo, et al. Corrosion behavior of B10 alloy exposed to seawater containing vibrio azureus sulfate-reducing bacteria, and their mixture[J]. Acta Metallurgica Sinica, 2014, 50(12): 1461 − 1470. doi: 10.11900/0412.1961.2014.00204
|
Hu X, Barker R, Neville A, et al. Case study on erosion-corrosion degradation of pipework located on an offshore oil and gas facility[J]. Wear, 2011, 271(9-10): 1295 − 1301. doi: 10.1016/j.wear.2011.01.036
|
王刚, 张强编著. 流体力学[M]. 北京: 北京理工大学出版社, 2019.
Wang Gang, Zhang Qiang. Fluid Mechanics[M]. Beijing: Beijing Institute of Technology Press, 2019.
|
[1] | ZHANG Chengzhu, WANG Dongye, HUA Cheng, LIU Yue, ZHANG Qian, ZHU Zhenxin. Fatigue properties of B950CF steel ultra-narrow gap laser wire filler welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(9): 94-102. DOI: 10.12073/j.hjxb.20230920001 |
[2] | ZHANG Xinmeng, GAO Shikang, LI Gaohui, ZHANG Haifeng, ZHOU Li, WANG Ping. Study on the fatigue performance of bobbin tool friction stir welding of 6005A-T6 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 30-36. DOI: 10.12073/j.hjxb.20221119001 |
[3] | WANG Lei, FU Qiang, AN Jinlan, ZHOU Song. Multi-zone fatigue crack growth behavior of friction stir welding of 2A12-T4 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 24-29. DOI: 10.12073/j.hjxb.20200724001 |
[4] | ZHANG Nan, ZHAO Yang, TIAN Zhiling, ZHENG Jiangpeng, ZHANG Shuyan, LI Xiaolin. Microstructure properties and anti-fatigue characteristics on CGHAZ of 600 MPa grade cold-pressed axle housing steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(11): 38-46. DOI: 10.12073/j.hjxb.20200119002 |
[5] | YANG Shangqing, XU Lianyong, ZHAO Lei, HAN Yongdian, JING Hongyang. Study on high temperature low cycle fatigue behavior of a novel austenitic heat-resistant steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 14-18. DOI: 10.12073/j.hjxb.20190718003 |
[6] | DENG Caiyan, GAO Ren, GONG Baoming, WANG Dongpo. Research on ultra-high-cycle fatigue properties of 7050 aluminum alloy FSW welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(11): 114-118. DOI: 10.12073/j.hjxb.2018390284 |
[7] | JING Hongyang<sup>1,2</sup>, SU Dingbang<sup>1,2</sup>, XU Lianyong<sup>1,2</sup>, ZHAO Lei<sup>1,2</sup>. Study on high temperature low cycle fatigue behavior of P92 steel under 630℃[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 33-36. DOI: 10.12073/j.hjxb.2018390170 |
[8] | TONG Jianhua, ZHANG Kun, LIN Song, WANG Weibing. Comparison of fatigue property of 6082 aluminum alloy joint by friction stir welding and metal inert-gas welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(7): 105-108. |
[9] | WANG Xijing, LI Shuwei, NIU Yong, Zhang Jie. Fatigue crack growth rate of A7075 FSW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (9): 5-7. |
[10] | JIA Fa-yong, HUO Li-xing, ZHANG Yu-feng, YANG Xin-qi. Study of Fatigue Crack Propagation Rate for 20MnHR Steel Used in Nuclear Industry[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (3): 67-70. |