Advanced Search
ZHANG Wei, LIU Feng, LI Xiangbo, CHENG Xudong, SU Yan, SHAO Gangqin. Influence of weld reinforcements on corrosion behavior of Cu-Ni alloy pipe[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 115-121. DOI: 10.12073/j.hjxb.20220302001
Citation: ZHANG Wei, LIU Feng, LI Xiangbo, CHENG Xudong, SU Yan, SHAO Gangqin. Influence of weld reinforcements on corrosion behavior of Cu-Ni alloy pipe[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 115-121. DOI: 10.12073/j.hjxb.20220302001

Influence of weld reinforcements on corrosion behavior of Cu-Ni alloy pipe

More Information
  • Received Date: March 01, 2022
  • Available Online: December 18, 2022
  • The downstream area of seawater pipeline welds is a hot spot for corrosion. In order to explore the influence of weld reinforcements on the corrosion behavior of B30 pipes in the downstream area, the in-situ electrochemical testing device and the home-made circulating seawater-scouring device were used in four scouring-test nodes at 3 d, 7 d, 15 d, 30 d. The impedance spectra were tested with three simulated weld reinforcements (0 mm; 0.5 mm; 1.5 mm) in the adjacent heat-affected zone (HAZ) and 30-mm-downstream base-metal zone (BMZ). The corrosion morphology of the sample surface was observed by the scanning electron microscope (SEM), and the finite-element-simulation flow-model was established by using COMSOL software. The influence of weld reinforcements on the flow state of the medium was discussed. Results show that the impedance values in the HAZ and BMZ were smaller than those of the no-welding in the case of welding. The weld structure would accelerate the corrosion in the downstream zone. The larger the reinforcement, the greater the corrosion tendency. The corrosion rate in the HAZ was larger than that in the BMZ. The flow model showed that an eddy current appeared in the HAZ and accelerated the corrosion there.
  • 张文毓. 船舶海水管系腐蚀与防护[J]. 船舶物资与市场, 2019, 10: 11 − 16. doi: 10.3969/j.issn.1006-6969.2019.05.012

    Zhang Wenyu. Corrosion and protection of marine pipelines[J]. Marine Equipment, 2019, 10: 11 − 16. doi: 10.3969/j.issn.1006-6969.2019.05.012
    姬升阳, 王长罡, 蔡伟, 等. 溪洛渡水电站铜镍合金冷却器腐蚀机理研究[J]. 水电站机电技术, 2019, 42(7): 71 − 75. doi: 10.13599/j.cnki.11-5130.2019.07.019

    Ji Shengyang, Wang Changgang, Cai Wei, et al. Research on corrosion mechanism of copper-nickel alloy cooler of Xiluodu hydropower station[J]. Mechanical Electrical Technique of Hydropower Station, 2019, 42(7): 71 − 75. doi: 10.13599/j.cnki.11-5130.2019.07.019
    Jin T, Zhang W, Li N, et al. Surface characterization and corrosion behavior of 90/10 copper-nickel alloy in marine environment[J]. Materials, 2019, 12(11): 1869 − 1873. doi: 10.3390/ma12111869
    Ahmed W H, Bello M M, El Nakla M, et al. Flow and mass transfer downstream of an orifice under flow accelerated corrosion conditions[J]. Nuclear Engineering and Design, 2012, 252: 52 − 67. doi: 10.1016/j.nucengdes.2012.06.033
    Si X, Si H, Li M, et al. Investigation of corrosion behavior at elbow by array electrode and computational fluid dynamics simulation[J]. Materials and Corrosion, 2020, 71(10): 1637 − 1650. doi: 10.1002/maco.201911373
    Gu Y, Xiao F, Zhou Y, et al. Behaviors of embrittlement and softening in heat affected zone of high strength X90 pipeline steels[J]. Soldagem & Inspecao, 2019, 24(1): 13 − 22.
    Zhang Y, Feng X, Song C, et al. Quantification of grain boundary connectivity for predicting intergranular corrosion resistance in BFe10-1-1 copper-nickel alloy[J]. MRS Communications, 2019, 9(1): 251 − 257. doi: 10.1557/mrc.2018.211
    Sun B, Ye T, Feng Q, et al. Accelerated degradation test and predictive failure analysis of B10 copper-nickel alloy under marine environmental conditions[J]. Materials, 2015, 8(9): 6029 − 6042. doi: 10.3390/ma8095290
    魏仁超, 许凤玲, 蔺存国, 等. 远青弧菌、硫酸盐还原菌及其混合菌种作用下B10合金的海水腐蚀行为[J]. 金属学报, 2014, 50(12): 1461 − 1470. doi: 10.11900/0412.1961.2014.00204

    Wei Renchao, Xu Fengling, Lin Cunguo, et al. Corrosion behavior of B10 alloy exposed to seawater containing vibrio azureus sulfate-reducing bacteria, and their mixture[J]. Acta Metallurgica Sinica, 2014, 50(12): 1461 − 1470. doi: 10.11900/0412.1961.2014.00204
    Hu X, Barker R, Neville A, et al. Case study on erosion-corrosion degradation of pipework located on an offshore oil and gas facility[J]. Wear, 2011, 271(9-10): 1295 − 1301. doi: 10.1016/j.wear.2011.01.036
    王刚, 张强编著. 流体力学[M]. 北京: 北京理工大学出版社, 2019.

    Wang Gang, Zhang Qiang. Fluid Mechanics[M]. Beijing: Beijing Institute of Technology Press, 2019.
  • Related Articles

    [1]ZHANG Chengzhu, WANG Dongye, HUA Cheng, LIU Yue, ZHANG Qian, ZHU Zhenxin. Fatigue properties of B950CF steel ultra-narrow gap laser wire filler welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(9): 94-102. DOI: 10.12073/j.hjxb.20230920001
    [2]ZHANG Xinmeng, GAO Shikang, LI Gaohui, ZHANG Haifeng, ZHOU Li, WANG Ping. Study on the fatigue performance of bobbin tool friction stir welding of 6005A-T6 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 30-36. DOI: 10.12073/j.hjxb.20221119001
    [3]WANG Lei, FU Qiang, AN Jinlan, ZHOU Song. Multi-zone fatigue crack growth behavior of friction stir welding of 2A12-T4 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 24-29. DOI: 10.12073/j.hjxb.20200724001
    [4]ZHANG Nan, ZHAO Yang, TIAN Zhiling, ZHENG Jiangpeng, ZHANG Shuyan, LI Xiaolin. Microstructure properties and anti-fatigue characteristics on CGHAZ of 600 MPa grade cold-pressed axle housing steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(11): 38-46. DOI: 10.12073/j.hjxb.20200119002
    [5]YANG Shangqing, XU Lianyong, ZHAO Lei, HAN Yongdian, JING Hongyang. Study on high temperature low cycle fatigue behavior of a novel austenitic heat-resistant steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 14-18. DOI: 10.12073/j.hjxb.20190718003
    [6]DENG Caiyan, GAO Ren, GONG Baoming, WANG Dongpo. Research on ultra-high-cycle fatigue properties of 7050 aluminum alloy FSW welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(11): 114-118. DOI: 10.12073/j.hjxb.2018390284
    [7]JING Hongyang<sup>1,2</sup>, SU Dingbang<sup>1,2</sup>, XU Lianyong<sup>1,2</sup>, ZHAO Lei<sup>1,2</sup>. Study on high temperature low cycle fatigue behavior of P92 steel under 630℃[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 33-36. DOI: 10.12073/j.hjxb.2018390170
    [8]TONG Jianhua, ZHANG Kun, LIN Song, WANG Weibing. Comparison of fatigue property of 6082 aluminum alloy joint by friction stir welding and metal inert-gas welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(7): 105-108.
    [9]WANG Xijing, LI Shuwei, NIU Yong, Zhang Jie. Fatigue crack growth rate of A7075 FSW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (9): 5-7.
    [10]JIA Fa-yong, HUO Li-xing, ZHANG Yu-feng, YANG Xin-qi. Study of Fatigue Crack Propagation Rate for 20MnHR Steel Used in Nuclear Industry[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (3): 67-70.
  • Cited by

    Periodical cited type(3)

    1. 庞嘉尧,程伟. 铝合金搅拌摩擦焊接头疲劳性能研究进展. 兵器材料科学与工程. 2025(01): 164-175 .
    2. 耿庆涛,杨丽,曲凤娇,韩宝明,黄盛林. 不同应力比对6005A铝合金裂纹扩展速率的影响研究. 轨道交通材料. 2025(02): 51-54 .
    3. 邹阳,魏巍,范悦,王泽震,王强,赵亮. 铝合金搅拌摩擦焊工艺研究进展. 热加工工艺. 2024(03): 7-13 .

    Other cited types(2)

Catalog

    Article views (234) PDF downloads (47) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return