Citation: | HU Dan, LYU Bo, WANG Jingjing, GAO Xiangdong. Study on HOG-SVM detection method of weld surface defects using laser visual sensing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 57-62, 70. DOI: 10.12073/j.hjxb.20211231001 |
Gao X D, Ma N J, Du L L. Magneto-optical imaging characteristics of weld defects under alternating magnetic field excitation[J]. Optics express, 2018, 26(8): 9972 − 9983. doi: 10.1364/OE.26.009972
|
Gantala T, Balasubramaniam K. Automated defect recognition for welds using simulation assisted TFM imaging with artificial intelligence[J]. Journal of Nondestructive Evaluation, 2021, 40(1): 1 − 24. doi: 10.1007/s10921-020-00734-w
|
Lu Y, Jiang H Q. Weld defect classification in radiographic images using unified deep neural network with multi-level features[J]. Journal of Intelligent Manufacturing, 2020, 32(3): 459 − 469.
|
Kumar D, Verma D, Suryanarayana B, et al. Analysis of welding characteristics on stainless steel for the process of TIG and MIG with dye penetrate testing[J]. International Journal of Engineering and Innovative Technology, 2012, 2(1): 283 − 290.
|
Gao X D, Ding D, Bai T, Katayama S. Weld-pool image centroid algorithm for seam-tracking vision model in arc-welding process[J]. IET image processing, 2011, 5(5): 410 − 419. doi: 10.1049/iet-ipr.2009.0231
|
谢志孟, 高向东. 基于Canny算子的焊缝图像边缘提取技术[J]. 焊接学报, 2006, 27(1): 29 − 32. doi: 10.3321/j.issn:0253-360X.2006.01.008
Xie Zhimeng, Gao Xiangdong. Edge detection of weld image based on Canny operator[J]. Transactions of the China Welding Institution, 2006, 27(1): 29 − 32. doi: 10.3321/j.issn:0253-360X.2006.01.008
|
Gao X D, Mo L, Xiao Z L, et al. Seam tracking based on Kalman filtering of micro-gap weld using magneto-optical image[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(1-4): 21 − 32. doi: 10.1007/s00170-015-7560-x
|
Chi D Z, Gang T. Defect detection method based on 2D entropy image segmentation[J]. China Welding, 2020, 29(1): 45 − 49.
|
Sun J, Wang P, Luo Y K, et al. Surface Defects Detection Based on Adaptive Multiscale Image Collection and Convolutional Neural Networks[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(12): 4787 − 4797. doi: 10.1109/TIM.2019.2899478
|
Gao X D, Sun Y, Katayama S. Neural network of plume and spatter for monitoring high-power disk laser welding[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2014, 1(4): 293 − 298. doi: 10.1007/s40684-014-0035-y
|
Wang H F, Wu Z J, He Z C, et al. Detection of HF-ERW Process by 3D Bead Shape Measurement with Line-Structured Laser Vision[J]. IEEE Sensors Journal, 2021, 21(6): 7681 − 7690. doi: 10.1109/JSEN.2021.3049396
|
Han Y Q, Fan J F, Yang X Z. A structured light vision sensor for on-line weld bead measurement and weld quality inspection[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(1): 2065 − 2078.
|
杨国威, 闫树明, 王以忠. 基于方向梯度直方图粒子滤波的V型焊缝跟踪[J]. 中国激光, 2020, 47(7): 330 − 338.
Yang Guowei, Yan Shuming, Wang Yizhong. V-Shaped Seam Tracking Based on Particle Filter with Histogram of Oriented Gradient[J]. Chinese Journal of Lasers, 2020, 47(7): 330 − 338.
|
周晓晓, 王克鸿, 杨嘉佳, 等. 电压近似熵-SVM铝合金双丝PMIG焊过程稳定性评价[J]. 焊接学报, 2017, 38(3): 107 − 111.
Zhou Xiaoxiao, Wang Kehong, Yang Jiajia, et al. Process stability evaluation on aluminum alloy twin-wire PMIG welding by approximate entropy based SVM of voltage signa[J]. Transactions of the China Welding Institution, 2017, 38(3): 107 − 111.
|
[1] | FAN Wenxue, CHEN Furong. Prediction and optimization of tensile strength of 7A52 aluminum alloy friction stir welding joints based on response surface methodology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 55-60. DOI: 10.12073/j.hjxb.20210322001 |
[2] | JIA Zhihong, WAN Xiaohui, GUO Delun. Optimization of UHFP-GTAW process based on response surface method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(6): 90-96. DOI: 10.12073/j.hjxb.20190807005 |
[3] | ZHOU Liucheng, ZHOU Lei, LI Yinghong, WANG Cheng. Effect of laser shock processing on tensile strength of welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (4): 52-54,58. |
[4] | JIANG Qinglei, LI Yajiang, WANG Juan, XU Zonglin, FU Jinliang. Strength matching on mechanical properties of welded joint of Q550 high strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (10): 65-68. |
[5] | GANG Tie, ZHAO Xuemei, LIN Sanbao, LUAN Yilin. Non-destructive evaluation of FSW tensile property[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (6): 1-4. |
[6] | XUE Song-bai, WU Yu-xiu, CUI Guo-ping, ZHANG Ling. Numerical simulation of effect of thermal cycling on tensile strength and microstructure of QFP soldered joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (11): 1-4. |
[7] | YAO Li-hua, XUE Song-bai, WANG Peng, LIU Lin. Effect of diode-laser parameters on tensile strength of QFP micro-joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (10): 90-92. |
[8] | HU Yong-fang, XUE Song-bai, YU Sheng-lin. Study on strength of soldered micro-joints of QFP devices[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (10): 78-80. |
[9] | HU Yong-fang, XUE Song-bai, SHI Yi-ping, YU Sheng-lin. Effects of lead-free solder on the tensile strength of QFP micro-joints soldered with different pitchs[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (10): 72-74. |
[10] | ZHU Liang, CHEN Jian-hang. Characteristics of stress distribution and prediction of strength inheat-affected zone softened welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (3): 48-51. |