Citation: | FAN Wenxue, CHEN Furong. Prediction and optimization of tensile strength of 7A52 aluminum alloy friction stir welding joints based on response surface methodology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 55-60. DOI: 10.12073/j.hjxb.20210322001 |
陈芙蓉, 贾翠玲. 7A52铝合金焊接及其接头表面纳米化研究现状[J]. 华东交通大学学报, 2019, 36(1): 1 − 11.
Chen Furong, Jia Cuiling. Review on 7A52 aluminum alloy welding and its welded joint surface nanocrystallization[J]. Journal of East China Jiaotong University, 2019, 36(1): 1 − 11.
|
Jia Y, Qin Y, Ou Y, Wang K, et al. The influence of microstructural heterogeneity on mechanical properties of friction stir welded joints of T6-treated Al-Zn-Mg alloy 7A52[J]. Metals, 2018, 8: 527 − 538. doi: 10.3390/met8070527
|
Eivani A R, Vafaeenezhad H, Jafarian H R, et al. A novel approach to determine residual stress field during FSW of AZ91 Mg alloy using combined smoothed particle hydrodynamics/ neuro-fuzzy computations and ultrasonic testing[J]. Journal of Magnesium and Alloys, 2021, 9(4): 1304 − 1328. doi: 10.1016/j.jma.2020.11.018
|
赵军军, 张平, 王卫欣, 等. 7A52铝合金搅拌摩擦焊的焊缝成形[J]. 焊接学报, 2005, 26(5): 61 − 64. doi: 10.3321/j.issn:0253-360X.2005.05.016
Zhao Junjun, Zhang Ping, Wang Weixin, et al. Weldbead shaping of friction stir welded 7A52 aluminum Alloy[J]. Transactions of the China Welding Institution, 2005, 26(5): 61 − 64. doi: 10.3321/j.issn:0253-360X.2005.05.016
|
Su H, Wu C S. Numerical simulation for the optimization of polygonal pin profiles in friction stir welding of aluminum[J]. Acta Metallurgica Sinica(English Letters), 2021, 34(8): 1065 − 1078. doi: 10.1007/s40195-021-01198-1
|
Chen D G, Liu J H, Ma Z H, et al. Microstructure and properties of welding joints of 7A52 aluminum alloy by the friction stir welding[J]. Applied Mechanics and Materials, 2014, 2948: 292 − 296.
|
刘红伟, 周琦, 朱军, 等. 7A52铝合金厚板搅拌摩擦焊接头性能研究[J]. 兵器材料科学与工程, 2006, 29(3): 57 − 60. doi: 10.3969/j.issn.1004-244X.2006.03.016
Liu Hongwei, Zhou Qi, Zhu Jun, et al. Research on joint properties of 7A52 aluminum alloy thick plate by friction stir welding[J]. Ordnance Material Science and Engineering, 2006, 29(3): 57 − 60. doi: 10.3969/j.issn.1004-244X.2006.03.016
|
周鹏展, 钟掘, 贺地求. 7A52铝合金厚板搅拌摩擦焊[J]. 中国有色金属学报, 2006, 16(6): 964 − 969. doi: 10.3321/j.issn:1004-0609.2006.06.006
Zhou Pengzhan, Zhong Jue, He Diqiu. Friction-stir welding on thick plate of 7A52 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2006, 16(6): 964 − 969. doi: 10.3321/j.issn:1004-0609.2006.06.006
|
Sivabalan S, Sridhar R, Parthiban A, et al. Experimental investigations of mechanical behavior of friction stir welding on aluminium alloy 6063[J]. Materials Today:Proceedings, 2021, 37(2): 1678 − 1684.
|
郝利新,贾瑞灵,张慧霞,等. 微弧氧化膜对7A52铝合金搅拌摩擦焊接头腐蚀不均匀性的影响[J]. 焊接学报, 2019, 40(3): 145 − 150.
Hao Lixin, Jia Ruiling, Zhang Huixia, et al. Influence of micro-arc oxidation film on corrosion of inhomogeneity of 7A52 aluminum alloy friction stir welding joint[J]. Transactions of the China Welding Institution, 2019, 40(3): 145 − 150.
|
Yuvaraj K P, Ashoka V P, Boopathiraja K P. Optimization of process parameters on friction stir welding of AA7075-T651 and AA6061 joint using response surface methodology[J]. Materials Research Express, 2019, 6(9): 6558 − 6578.
|
Thanatkij S, Rapeepan P, Kanchana S, et al. Combined response surface method and modified differential evolution for parameter optimization of friction stir welding[J]. Processes, 2020, 8: 1080 − 1102. doi: 10.3390/pr8091080
|
Wasif S, Salman H, Ahmad W, et al. Predicting the tensile strength, impact toughness, and hardness of friction stir-welded AA6061-T6using response surface methodology[J]. International Journal of Advanced Manufacturing Technology, 2016, 87: 1765 − 1781. doi: 10.1007/s00170-016-8565-9
|
Ramachandran K K, Murugan N, Kumar S S. Performance analysis of dissimilar friction stir welded aluminium alloy AA5052 and HSLA steel butt joints using response surface method[J]. International Journal of Advanced Manufacturing Technology, 2016, 86: 2373 − 2392. doi: 10.1007/s00170-016-8337-6
|
1. |
张普,曹四龙. Al_2O_3+TiO_2复合颗粒对激光熔覆Inconel 718基润滑涂层显微组织及高温磨损行为的影响研究. 材料保护. 2024(06): 8-19 .
![]() | |
2. |
魏来,李丹,董振. 原位自生(Ti, V)C堆焊层的耐磨性能. 沈阳工业大学学报. 2023(01): 43-47 .
![]() | |
3. |
刘海浪,卢儒学,陈健,徐珖韬,张倩. 镍基合金电子束熔覆表面改性及高温耐磨性研究. 金属热处理. 2021(04): 161-166 .
![]() | |
4. |
吴雁楠,黄诗铭,朱平,马振一,兰博,何翰伟,郝博文. 原位碳化钛颗粒增强镍基喷焊层的组织与性能. 热加工工艺. 2021(22): 96-98+102 .
![]() | |
5. |
马强,陈明宣,孟君晟,李成硕,史晓萍,彭欣. 纯铜表面氩弧熔覆TiB_2/Ni复合涂层组织及耐磨性能. 焊接学报. 2021(09): 90-96+102 .
![]() | |
6. |
王永东,杨在林,张宇鹏,朱艳. Y_2O_3对原位自生TiC增强Ni基涂层组织和性能影响. 焊接学报. 2020(02): 53-57+100 .
![]() | |
7. |
陈鹏涛,曹梅青,吕萧,仇楠楠. 氩弧熔敷原位合成ZrC-TiB_2增强铁基涂层的组织与性能. 上海金属. 2020(05): 15-20 .
![]() |