Advanced Search
ZHU Liang, CHEN Jian-hang. Characteristics of stress distribution and prediction of strength inheat-affected zone softened welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (3): 48-51.
Citation: ZHU Liang, CHEN Jian-hang. Characteristics of stress distribution and prediction of strength inheat-affected zone softened welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (3): 48-51.

Characteristics of stress distribution and prediction of strength inheat-affected zone softened welded joints

More Information
  • Received Date: May 27, 2003
  • The effects of yield stress decrease due to coarsening grain in the HAZ (heat-affected zone) of fine-grained steels welded joint son the load capacities of the joint are required to be evaluated.The finite element analyses are carried out on tensile plate specimen of butt-weldedjoint with softened HAZ.The stress distribution in such joints shows the characteristics as follows:the Mises equivalent stress increase with the exponential law in the welds and base metal adjacent to softened HAZ,and that in softened HAZ decrease correspondingly.At the boundaries between HAZ and weld metal and base metal Mises equivalent stressesrapidly changes,amplitudes of which are related to the differences of yield stresses in the both sides around the boundary,and applied stress.The integration of the decrease in the Mises equivalent stress in the softest zone equals to that of the increase over the weld metal and base metal zones.Based on above results,an approach to predict the tensile strength of such joint is suggested.The prediction results using this method areconsistent with the results calculated with finite element analysis method.This approach is suitable for prediction of strength of the HAZ-softened welded joints,and design for tensile strength in overmatched welded joints.
  • Related Articles

    [1]MAO Zhiwei, CHEN Bin, ZHOU Shaoling, XU Wei, WU Xun. Mathematical model of rotating arc sensor based on actual deposited metal of the weld pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 26-30. DOI: 10.12073/j.hjxb.2019400036
    [2]ZHANG Jing-hai, WEI Jin-shan, WANG Xiao-dong. Mathematical model of hydrogen escaping from deposited metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (4): 73-78.
    [3]YU Zhong hai. Mathematical model for automatic cladding of spherical shell cover[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (3): 68-71.
    [4]BAI Zhi-fan, WANG Wei-ming, JIANG Zhi-hong, ZHANG Yi. LCL-type Resonant Arc Welding Power Supply and Its Steaty-state Mathematical Model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (4): 80-83.
    [5]YU Sheng-fu, LI Zhi-yuan, ZHANG Guo-dong, SHI Zhong-kun. Heating Mathematical Model and Thermal Dynamics of Flux Cored Wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (3): 66-69.
    [6]Ma Hongze, Jiang Lipei, Zhang Jiangying, Li Shuhuai. Mathematical Model of Spot Welding for Quality Control[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1997, (4): 210-215.
    [7]Cao Zhenning, Wu Chuansong, Wu Lin. Mathematical Modeling of TIG Molten Pool with Full-penetration[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1996, (1): 62-70.
    [8]Gang Tie, Takayoshi OHJI. On-line idcntification of mathematical model parameters and selection of optimized welding parameters[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1992, (4): 225-230.
    [9]Zhao Pengsheng, Wang Yaowen. Distribution model for current density of plasma welding arcs[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (3): 182-188.
    [10]Gang Tie, Takayoshi Ohji. MATHEMATICAL MODEL OF MOLTIEN POOL AND ON-LINE OPTIMIZATION OF WELDING PARAMETERS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1989, (2): 119-125.

Catalog

    Article views (249) PDF downloads (64) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return