Advanced Search
ZHAO Nana, YAO Teli, WANG Zihan, ZHANG Chenxi, WANG Lehao, LI Shujuan. Preparation of TiC/Fe composite layer on the surface of GCr15 and its binding performance with matrix[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 11-16. DOI: 10.12073/j.hjxb.20211126001
Citation: ZHAO Nana, YAO Teli, WANG Zihan, ZHANG Chenxi, WANG Lehao, LI Shujuan. Preparation of TiC/Fe composite layer on the surface of GCr15 and its binding performance with matrix[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 11-16. DOI: 10.12073/j.hjxb.20211126001

Preparation of TiC/Fe composite layer on the surface of GCr15 and its binding performance with matrix

More Information
  • Received Date: November 25, 2021
  • Available Online: April 28, 2022
  • In this study, A TiC/Fe composite layer was prepared on the surface of GCr15 using hot pressure diffusion in situ reaction. X-ray diffractometer (XRD), scanning electron microscopy (SEM), automatic scratching instrument and microhardness apparatus were used to characterize the phase composition, microstructure, interface binding properties of the composite layer and changes in microhardness. The results show that the thickness of the TiC/Fe composite layer after insulation for 2 h, 4 h and 6 h at 1 000 ℃, 40 MPa is 5 μm, 7 μm and 10 μm, respectively, the thickness of the composite layer is uniform, the interface with the matrix is flat. The surface phase composition is only TiC and α-Fe phase, and the microhardness of the composite layer is up to 2 453.7 HV0.05, which is about 5 times that of the bearing steel matrix. Micro scratching and tensile tests show that the critical load of the composite layer bonding to the matrix interface at 1 000 ℃, 40 MPa for 4 h is 58.5 N, and the interfacial bonding strength is greater than 221 MPa. The results show that the TiC/Fe composite layer on the surface of GCr15 prepared by hot compression diffusion in situ has excellent binding properties and good matrix protection effect.
  • 俞峰, 陈兴品, 徐海峰, 等. 滚动轴承钢冶金质量与疲劳性能现状及高端轴承钢发展方向[J]. 金属学报, 2020, 56(4): 513 − 522. doi: 10.11900/0412.1961.2019.00361

    Yu Feng, Chen Xingpin, Xu Haifeng, et al. Current status of metallurgical quality and fatigue performance of rolling bearing steel and development direction of high-end bearing steel[J]. Acta Metall Sin, 2020, 56(4): 513 − 522. doi: 10.11900/0412.1961.2019.00361
    张朝磊, 朱禹承, 蒋波. 高碳铬轴承钢组织双超细化的研究现状与发展趋势[J]. 材料导报, 2023(6): 1 − 12.

    Zhang Chaolei, Zhu Yucheng, Jiang Bo. Research status and development trend of microstructure double ultra refinement of high carbon chromium bearing steel[J]. Materials Reports, 2023(6): 1 − 12.
    尹洪峰, 任耘, 范强, 等. 反应热压烧结法制备SiC/Ti3SiC2复合材料及其性能[J]. 复合材料学报, 2011, 28(3): 69 − 73.

    Yin Hongfeng, Reng Yun, Fan Qiang, et al. Fabrication and properties of SiC/Ti3SiC2 composites by reactive hot pressing sintering[J]. Acta Materials Compositae Sinica, 2011, 28(3): 69 − 73.
    刘树英, 张冬冬, 刘亚洲, 等. 钛合金/Cu/不锈钢扩散焊界面化合物生长行为解析[J]. 焊接学报, 2019, 40(9): 133 − 138,167.

    Chen Shuying, Zhang Dongdong, Liu Yazhou, et al. Analysis of growth behavior of intermetallic compound in diffusion bonding of Ti alloy/Cu/stainless steel[J]. Transactions of the China Welding Institution, 2019, 40(9): 133 − 138,167.
    陈路路, 翟洪祥, 黄振莺, 等. TiCx含量对热压制备TiCx-Fe基复合材料力学性能的影响[J]. 稀有金属材料与工程, 2018, 47(S1): 407 − 411.

    Chen Lulu, Zhai Hongxiang, Huang Zhenying, et al. Effect of TiCx content on mechanical properties of TiCx-Fe matrix composites prepared by hot pressing[J]. Rare Metal Materials and Engineering, 2018, 47(S1): 407 − 411.
    庄伟彬, 田宗伟, 刘广柱, 等. 原位自生TiCp/6061复合材料的组织、硬度及耐磨性能[J]. 材料导报, 2019, 33(22): 3762 − 3767. doi: 10.11896/cldb.18100185

    Zhuang Weibin, Tian Zongwei, Liu Guangzhu, et al. Microstructure, hardness and wear resistance properties of in-situ TiCp/6061 composites[J]. Materials Reports, 2019, 33(22): 3762 − 3767. doi: 10.11896/cldb.18100185
    孙淼, 许存官, 何建平, 等. 熔铸-原位合成TiC/7075复合材料的拉伸和磨损性能[J]. 稀有金属材料与工程, 2009, 38(2): 308 − 312. doi: 10.3321/j.issn:1002-185X.2009.02.027

    Sun Miao, Xu Cunguan, He Jianping, et al. Tensile and wear properties of TiC/7075 composite prepared by melt in-situ synthesis[J]. Rare Metal Materials and Engineering, 2009, 38(2): 308 − 312. doi: 10.3321/j.issn:1002-185X.2009.02.027
    Lagos M A, Agote I, Atxtaga G, et al. Fabrication and characterisation of titanium matrix composites obtained using a combination of self propagating high temperature synthesis and spark plasma sintering[J]. Materials Science & Engineering A, 2016, 65(5): 44 − 49.
    Anton P, Marie J, Gert B, et al. Manufacturing Fe-TiC metal matrix composite by electron beam powder bed fusion from pre-alloyed gas atomized powder[J]. Materials Science & Engineering A, 2021, 813: 141130.
    Zhong L S, Wu T D, Zhang X, et al. In situ preparation of titanium carbide ceramic layer on grey cast iron[J]. Materials Science, 2015, 21(4): 586 − 589.
    Zhang Z H, Wang X, Zhang Q Q, et al. Fabrication of Fe-based composite coatings reinforced by TiC particles and its microstructure and wear resistance of 40Cr gear steel by low energy pulsed laser cladding[J]. Optics & Laser Technology, 2019, 119: 10562.
    Khalili A, Goodarzi M, Mojtahedi M, et al. Solidification microstructure of in-situ laser-synthesized Fe-TiC hard coating[J]. Surface & Coatings Technology, 2016, 307: 747 − 752.
    宋欢. 原位生成TiC增强镍基喷焊层耐磨耐蚀性能研究[D]. 成都: 西华大学, 2020.

    Song Huan. The research on wear and corrosion resistance of Ni-based coatings by in-situ TiC reinforced[D]. Chengdu: Xihua University, 2020.
    董运涛, 张家毓, 李选明. 钛/钢双金属的可控气氛热复合工艺初探[J]. 稀有金属材料与工程, 2012, 41(S2): 141 − 144.

    Dong Yuntao, Zhang Jiayu, Li Xuanming. Preliminary study of controlled atmosphere roll bonding process for the titanium-steel bimetal system[J]. Rare Metal Materials and Engineering, 2012, 41(S2): 141 − 144.
    惠鹏飞. 间隙原子渗碳法制备金属(Ta、Mo、Ti6Al4V)表面碳化层的组织和性能研究[D]. 西安: 西安理工大学, 2019.

    Hui Pengfei. Microstructure and properties of interstitial atom carburizing layer on metal (Ta, Mo, Ti6Al4V) surfaces[D]. Xi’an: Xi’an University of Technology, 2019.
    冯爱新, 叶勇, 殷苏民, 等. 涂层界面失效破坏临界位置的理论分析与实验研究[J]. 中国激光, 2008(11): 1746 − 1751. doi: 10.3321/j.issn:0258-7025.2008.11.015

    Feng Aixin, Ye Yong, Yin Sumin, et al. Theoretical analysis and experimental research on the broken critica-position of coating interface[J]. Chinese Journal Lasers, 2008(11): 1746 − 1751. doi: 10.3321/j.issn:0258-7025.2008.11.015
  • Related Articles

    [1]XIE Yuxin, GONG Yefei, GU Xinhao, CHEN Xiaobin, WANG Meng, XU Huigang. Research on weld surface defect detection method based on RGB-D feature fusion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(12): 72-78. DOI: 10.12073/j.hjxb.20230712002
    [2]ZHU Ming, LEI Runji, WENG Jun, WANG Jincheng, SHI Yu. MIG weld seam tracking system based on image automatic enhancement and attention mechanism deep learning[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(11): 90-94. DOI: 10.12073/j.hjxb.20240718002
    [3]XU Donghui, MENG Fanpeng, SUN Peng, ZHENG Xuchen, CHENG Yongchao, MA Zhi, CHEN Shujun. Online monitoring of GMAW welding defect based on deep learning[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 114-119. DOI: 10.12073/j.hjxb.20230117002
    [4]WANG Rui, HU Yunlei, LIU Weipeng, LI Haitao. Defect detection of weld X-ray image based on edge AI[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 79-84. DOI: 10.12073/j.hjxb.20210516001
    [5]LIU Tianyuan, BAO Jinsong, WANG Junliang, ZHENG Xiaohu, WANG Jiacheng. Adaptive edge detection of molten pool based on coarse-grained regularization in restricted solution space[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(12): 49-54. DOI: 10.12073/j.hjxb.20200815002
    [6]LI Hexi, HAN Xinle, FANG Zaojun. A visual model of welding robot based on CNN deep learning[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 154-160. DOI: 10.12073/j.hjxb.2019400060
    [7]GAO Weixin, HU Yuheng, WU Xiaomeng. A new algorithm for detecting defects of sub-arc welding x-ray image based on compress sensor theory[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(11): 85-88.
    [8]LI Xueqin, LIU Peiyong, YIN Guofu, JIANG Honghai. Weld defect detection by X-ray images method based on Fourier fitting surface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(10): 61-64.
    [9]CAI Guorui, DU Dong, TIAN Yuan, HOU Runshi, GAO Zhiling. Defect detection of X-ray images of weld using optimized heuristic search based on image information fusion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (2): 29-32.
    [10]SUN Yi, SUN Hong-yu, BAI Peng, WANG Yu, TIAN Yan-ping. Real-time automatic detection of weld defects in X-ray images[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (2): 115-118,122.

Catalog

    Article views (347) PDF downloads (51) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return