Advanced Search
LIU Tianyuan, BAO Jinsong, WANG Junliang, ZHENG Xiaohu, WANG Jiacheng. Adaptive edge detection of molten pool based on coarse-grained regularization in restricted solution space[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(12): 49-54. DOI: 10.12073/j.hjxb.20200815002
Citation: LIU Tianyuan, BAO Jinsong, WANG Junliang, ZHENG Xiaohu, WANG Jiacheng. Adaptive edge detection of molten pool based on coarse-grained regularization in restricted solution space[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(12): 49-54. DOI: 10.12073/j.hjxb.20200815002

Adaptive edge detection of molten pool based on coarse-grained regularization in restricted solution space

More Information
  • Received Date: August 14, 2020
  • Available Online: December 27, 2020
  • Edge detection is a key step in the image processing of the molten pool. In view of the sharp changes in the arc in the molten pool area, the edge detection method that relies on artificially setting the threshold is difficult to adapt to the dynamic change of the arc. This paper proposes a deep learning-based edge extraction mode of the molten pool. Firstly, pixel-level annotation and data augmentation are performed on the original molten pool image to build a dataset. Secondly, a coarse-grained regularization method in restricted solution space (CGRRSS) is proposed to enhance edge features. Finally, the proposed method is compared with the traditional methods in both quantitative and qualitative aspects. The results show that the proposed method has a higher recall of edge points, the obtained molten pool edge is more continuous and has a better suppression effect on false edges. The detection time of a single image is 6.2 ms, which can meet the needs of online monitoring.
  • 侯震, 许燕玲, 黄色吉, 等. 视觉传感技术在机器人焊接中的应用[J]. 上海交通大学学报, 2016, 50(S1): 55 − 58.

    Hou Zhen, Xu Yanling, Huang Seji, et al. Application status of vision sensing used in robotic welding[J]. Journal of Shanghai Jiaotong University, 2016, 50(S1): 55 − 58.
    Liu Y K, Zhang Y M, Kvidahl L. Skilled human welder intelligence modeling and control[J]. Welding Journal, 2014, 93: 46 − 52.
    刘祖明. 受控脉冲穿孔等离子弧焊接背面小孔动态行为的视觉检测与控制[D]. 济南: 山东大学, 2013.

    Liu Zuming. Vision sensing and control of the backside keyhole dynamic behaviors in controlled-pulse keyholing plasma arc welding process[D]. Jinan: Shandong University, 2013.
    陈子琴, 高向东, 王琳. 大功率盘形激光焊焊缝背面宽度预测[J]. 光学精密工程, 2017, 25(9): 2524 − 2531. doi: 10.3788/OPE.20172509.2524

    Chen Ziqin, Gao Xiangdong, Wang Lin. Weld width prediction of weldment bottom surface in high-power disk laser welding[J]. Optics and Precision Engineering, 2017, 25(9): 2524 − 2531. doi: 10.3788/OPE.20172509.2524
    黄军芬, 薛龙, 黄继强, 等. 基于视觉传感的GMAW熔透状态预测[J]. 机械工程学报, 2019, 55(17): 41 − 47. doi: 10.3901/JME.2019.17.041

    Huang Junfen, Xue Long, Huang Jiqiang, et al. GMAW penetration state prediction based on visual sensing[J]. Journal of Mechanical Engineering, 2019, 55(17): 41 − 47. doi: 10.3901/JME.2019.17.041
    方吉米, 王克鸿, 黄勇. 高速GMAW驼峰焊道形成过程熔池图像识别[J]. 焊接学报, 2019, 40(2): 42 − 46.

    Fang Jimi, Wang Kehong, Huang Yong. Weld pool image recognition of humping formation process in high speed GMAW[J]. Transactions of the China Welding Institution, 2019, 40(2): 42 − 46.
    李静, 李芳, 朱伟, 等. 基于被动光的MAG管道打底焊焊缝边缘提取方法[J]. 焊接学报, 2011, 32(10): 69 − 72.

    Li Jing, Li Fang, Zhu Wei, et al. A new seam location extraction method for pipe-line backing welding of MAG based on passive optical vision sensor[J]. Transactions of the China Welding Institution, 2011, 32(10): 69 − 72.
    董瑶, 李伟超, 刘今越, 等. 用于航空发动机叶片焊接修复的改进Canny算法[J]. 焊接学报, 2018, 39(1): 37 − 40.

    Dong Yao, Li Weichao, Liu Jinyue, et al. An improved Canny operator used for aero-engine's blade welding and repairing[J]. Transactions of the China Welding Institution, 2018, 39(1): 37 − 40.
    桂楷欽. 焊缝缺陷射线数字成像参考图像研究[D]. 南昌: 南昌航空大学, 2019.

    Gui Kaiqin. Research on digital reference image of digital radiography for weld defect[D]. Nanchang: Nanchang Hangkong University, 2019.
    刘晓刚, 闫红方, 张荣. 基于形态学多尺度多结构的熔池图像边缘检测[J]. 热加工工艺, 2019, 48(5): 216 − 219.

    Liu Xiaogang, Yan Hongfang, Zhang Rong. Edge detection of molten pool image based on morphology multi-scale and multi-structuring elements[J]. Hot Working Technology, 2019, 48(5): 216 − 219.
    Xie S N, Tu Z W. Holistically-Nested edge detection[J]. International Journal of Computer Vision, 2017, 125(1−3): 3 − 18. doi: 10.1007/s11263-017-1004-z
    Liu Y, Cheng M, Hu X, et al. Richer convolutional features for edge detection[C]//IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017: 5872−5881.
    Yu Z, Feng C, Liu M, et al. CASENet: Deep category-aware semantic edge detection[C]//IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017: 1761−1770.
    Bertasius G, Shi J, Torresan L. DeepEdge: A multi-scale bifurcated deep network for top-down contour detection[C]//IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015: 4380−4389.
    Simard P Y, Steinkraus D, Platt J C. Best practices for convolutional neural networks applied to visual document analysis[C]//International Conference on Document Analysis and Recognition, Edinburgh, UK, 2003: 958 − 963.
    Zhang H, Cisse M, Dauphin Y N, et al. Mixup: Beyond empirical risk minimization[C]//International Conference on Learning Representations, Vancouver, BC, Canada, 2018: 1−13.
    Goodfellow I J, Pouget A J, Mirza M, et al. Generative adversarial nets[C]//International Conference on Neural Information Processing Systems, Montréal, Canada, 2014: 2672−2680.
  • Related Articles

    [1]HAN Mei, ZHANG Xi, MA Qingjun, WEI Yushun, WEI Chen, WANG Zejun, JIA Yunhai. The effect of trace elements on the microstructure and properties of coarse grain heat affected zone of EH36 ship steel with super large heat input[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 47-53. DOI: 10.12073/j.hjxb.20230301001
    [2]CAO Rui, YANG Zhaoqing, LI Jinmei, LEI Wanqing, ZHANG Jianxiao, CHEN Jianhong. Influence of fraction of coarse-grained heat affected zone on impact toughness for 09MnNiDR welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 7-13. DOI: 10.12073/j.hjxb.20190818003
    [3]SU Xiaohu, LI Zhuoxin, LI Hong, JinKim Hee, MENG Bo. Microstructure to properties of coarse grained heat affected zone in deposited weld metal of metal cored wire E120C-K4[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 48-53. DOI: 10.12073/j.hjxb.2019400262
    [4]ZHANG Lei, LIU Changqing, YU Jingwei, HU Xihai, GONG Feng, JIN Guangri. Numerical analysis of microstructure evolution of coarse grained zone in sidewall during narrow gap submerged arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(4): 103-106.
    [5]HU Meijuan, WANG Peng, HAN Xinli, JI Lingkang. Microstructure and properties of coarse grain region for high-strain pipeline X80 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (9): 93-96.
    [6]CHAI Feng, SU Hang, YANG Caifu, LUO Xiaobing. Coarse grained region microstructure and properties of high heat input welding DH36 steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (12): 25-28.
    [7]ZHANG Yingqiao, ZHANG Hanqian, LIU Weiming. Effects of M-A constituent on toughness of coarse grain heat-affected zone in HSLA steels for oil tanks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (1): 109-112.
    [8]WU Wei, GAO Hongming, WU Lin. Microstructures in CGHAZ and mechanical properties of welded joint during welding of fine grain titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (1): 61-64.
    [9]CHAI Feng, YANG Cai-fu, ZHANG Yong-quan, SU Hang, XU Zhou. Coarse-grained heat affected zone microstructure and toughness of copper-bearing age-hardening steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (6): 56-60.
    [10]Wu Zhantian, Guo Jiuzhu, Zhou Zhenhua, Zhu Hong, Wang Xiaoyu. Structure and property of coarse-grained zone in weld of a high strength low alloy 20Mn2WNbB steel studied by thermal simulation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1995, (1): 40-44.
  • Cited by

    Periodical cited type(1)

    1. 马晓锋,夏攀,刘海生,史铁林,王中任. 全位置焊接熔池的深度学习检测方法. 机械工程学报. 2023(12): 272-283 .

    Other cited types(0)

Catalog

    Article views (852) PDF downloads (23) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return