Advanced Search
CHEN Yujiao, LIU Quanjun. Experimental study on ultrasonic-aided laser joining of metal and plastic[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 37-42. DOI: 10.12073/j.hjxb.20211004001
Citation: CHEN Yujiao, LIU Quanjun. Experimental study on ultrasonic-aided laser joining of metal and plastic[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 37-42. DOI: 10.12073/j.hjxb.20211004001

Experimental study on ultrasonic-aided laser joining of metal and plastic

More Information
  • Received Date: October 03, 2021
  • Available Online: July 20, 2022
  • This article uses RSM (Response Surface Methodology) to optimize the parameters of ultrasonic-assisted laser welding of titanium and polyethylene terephthalate (PET), and mainly studies the influence of laser power, ultrasonic amplitude and ultrasonic load time on joint strength, bubble defect and the thickness of welding transition layer. Using XPS (X-ray photoelectron spectroscopy) to analyze the effect of ultrasonic load time and amplitude on the formation of beneficial chemical bonds at the interface. The results show that the law of the influence of laser power, ultrasonic amplitude and ultrasonic load time on welding strength are the same, that is, after reaching the maximum value, the welding strength decreases as the parameter value increases. When the laser power is 60W, the increase of the ultrasonic load time or amplitude will promote the formation of Ti-C bonds and increase the thickness of the welding transition layer. Experiments also show that when the laser power is less than 65W, the introduction of ultrasonic vibration can cause bubbles to flow and reduce bubble defects effectively.
  • Tan C W, Su J H, Zhu B H, et al. Effect of scanning speed on laser joining of carbon fiber reinforced PEEK to titanium alloy[J]. Optics and Laser Technology, 2020, 129: 106273. doi: 10.1016/j.optlastec.2020.106273
    Feng Z W, Ma G L, Su J H, et al. Influence of process parameters on the joint characteristics during laser joining of aluminium alloy and CFRTP[J]. Journal of Manufacturing Processes, 2021, 64: 1493 − 1506. doi: 10.1016/j.jmapro.2021.03.006
    刘天舒, 林健, 朱兵钺. 热塑性塑料和钢板的激光连接工艺[J]. 应用激光, 2020, 40(5): 836 − 840. doi: 10.14128/j.cnki.al.20204005.836

    Liu Tianshu, Lin Jian, Zhu Bingyue. Laser Welding of Thermoplastics and Steel[J]. Applied Laser, 2020, 40(5): 836 − 840. doi: 10.14128/j.cnki.al.20204005.836
    黄怡洁, 高向东, 林少铎. 激光焊接参数对有机玻璃与不锈钢接头力学性能的影响[J]. 中国激光, 2017(12): 89 − 96.

    Huang Yijie, Gao Xiangdong, Lin Shaoduo. Influences of Laser Welding Parameters on Mechanical Properties of Polymethyl Methacrylate and Stainless-Steel Joints[J]. Chinese Journal of Lasers, 2017(12): 89 − 96.
    Wahba M, Kawahito Y, Katayama S. Laser direct joining of AZ91D thixomolded Mg alloy and amorphous polyethylene terephthalate[J]. Journal of Materials Processing Technology, 2011, 211(6): 1166 − 1174. doi: 10.1016/j.jmatprotec.2011.01.021
    Tillmann W, Elrefaey A, Toward L. Toward process optimization in laser welding of metal to polymer[J]. Materialwissenschaft und Werkstofftechnik, 2010, 41(10): 879 − 883. doi: 10.1002/mawe.201000674
    Chen Y J, Yue T M, Guo Z N, A new laser joining technology for direct-bonding of metals and plastics[J]. Materials & Design, 2016, 110: 775–781.
    Chen Y J, Yue T M, Guo Z N. Laser joining of metals to plastics with ultrasonic vibration[J]. Journal of Materials Processing Technology, 2017, 249: 441 − 451. doi: 10.1016/j.jmatprotec.2017.06.036
    Wang X, Song X H, Jiang M F, et al. Modeling and optimization of laser transmission joining process between PET and 316L stainless steel using response surface methodology[J]. Optics and Laser Technology, 2012, 44(3): 656 − 663. doi: 10.1016/j.optlastec.2011.09.018
    Avila-Orta C, Espinoza-Gonzalez C, Martinez-Colunga G, et al. An overview of progress and current challenges in ultrasonic treatment of polymer melts[J]. Advances in Polymer Technology, 2013, 32: E582 − E602. doi: 10.1002/adv.21303
  • Related Articles

    [1]MA Nüjie, GAO Xiangdong, DAI Xinxin, ZHANG Nanfeng. Magnetic field characteristic simulation and magneto-optical imaging detection of weld cracks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 77-81. DOI: 10.12073/j.hjxb.2019400239
    [2]CHEN Yuquan, GAO Xiangdong. Neural network compensation for micro-gap weld detection by magneto-optical imaging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 33-36.
    [3]MO Ling, GAO Xiangdong, XIAO Zhenlin, CHEN Xiaohui. Weld detection of laser welding using magneto-optical color imaging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(1): 37-40.
    [4]GAO Xiangdong, LIU Yi, ZHANG Chi. Recognition of magneto-optical image of micro-gap weld using fractal dimension method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(12): 11-14.
    [5]GAO Xiangdong, ZHEN Renhe. A method to detect micro weld gap based on magneto-optical imaging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(4): 11-14.
    [6]YAN Xiaocheng, LI Zhiyong, GUO Yong, LI Yan. Correlation dimension analysis of current in GMAW welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (5): 65-68.
    [7]GAO Fei, WANG Kehong, LIANG Yongshun, ZHAN Lanlan, ZHANG Yan. A multi-scale fractal image segmentation method for arc welding pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (11): 33-36.
    [8]LIU Pengfei, SHAN Ping, LUO Zhen. Detection method of spot welding based on fractal and support vector machine[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 38-42.
    [9]WU Hua-zhi, GUO Hai-ding, GAO De-ping, XU kai-wang. Establishment of fatigue Fractal damage evolution equation on TC11 Ti alloy welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 93-95,107.
    [10]WU Hua-zhi, Guo Hai-ding, Gao De-ping. Fractal damage evolution model of low-cycled fatigue in welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (1): 88-90.
  • Cited by

    Periodical cited type(10)

    1. 刘许亮. 基于改进粒子滤波的焊缝磁光成像增强. 电子器件. 2023(01): 96-102 .
    2. 税法典,陈世强. 基于机器视觉的数据线焊接缺陷检测. 无损检测. 2023(08): 67-72 .
    3. 刘倩雯,叶广文,马女杰,高向东. 焊接微缺陷磁光成像检测有限元分析. 精密成形工程. 2022(03): 94-101 .
    4. 代欣欣,高向东,郑俏俏,季玉坤. 焊缝缺陷磁光成像模糊聚类识别方法. 焊接学报. 2021(01): 54-57+101 . 本站查看
    5. 王付军,刘兰英. 基于微焦点X射线的SMT焊点缺陷检测仿真. 计算机仿真. 2020(09): 428-431 .
    6. 甄任贺,熊建斌,周卫. 基于磁荷理论的微间隙焊缝磁光成像规律研究. 电焊机. 2019(07): 84-88 .
    7. 陈廷艳,梁宝英,罗瑜清. 基于神经网络的焊缝宽度预测方法研究. 机电信息. 2019(30): 88-89+91 .
    8. 王春草,高向东,李彦峰,张南峰. 磁光成像无损检测方法的研究现状与展望. 制造技术与机床. 2019(11): 31-37 .
    9. 王春草,高向东,李彦峰,张南峰. 磁光成像无损检测方法的研究现状与展望. 制造技术与机床. 2019(11): 31-37 .
    10. 张佳莹,丛森,刚铁,林尚扬. 基于频率–相位编码信号激励的焊缝超声检测分析. 焊接学报. 2018(07): 7-11+41+129 . 本站查看

    Other cited types(7)

Catalog

    Article views (260) PDF downloads (57) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return