Citation: | CHEN Yujiao, LIU Quanjun. Experimental study on ultrasonic-aided laser joining of metal and plastic[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 37-42. DOI: 10.12073/j.hjxb.20211004001 |
Tan C W, Su J H, Zhu B H, et al. Effect of scanning speed on laser joining of carbon fiber reinforced PEEK to titanium alloy[J]. Optics and Laser Technology, 2020, 129: 106273. doi: 10.1016/j.optlastec.2020.106273
|
Feng Z W, Ma G L, Su J H, et al. Influence of process parameters on the joint characteristics during laser joining of aluminium alloy and CFRTP[J]. Journal of Manufacturing Processes, 2021, 64: 1493 − 1506. doi: 10.1016/j.jmapro.2021.03.006
|
刘天舒, 林健, 朱兵钺. 热塑性塑料和钢板的激光连接工艺[J]. 应用激光, 2020, 40(5): 836 − 840. doi: 10.14128/j.cnki.al.20204005.836
Liu Tianshu, Lin Jian, Zhu Bingyue. Laser Welding of Thermoplastics and Steel[J]. Applied Laser, 2020, 40(5): 836 − 840. doi: 10.14128/j.cnki.al.20204005.836
|
黄怡洁, 高向东, 林少铎. 激光焊接参数对有机玻璃与不锈钢接头力学性能的影响[J]. 中国激光, 2017(12): 89 − 96.
Huang Yijie, Gao Xiangdong, Lin Shaoduo. Influences of Laser Welding Parameters on Mechanical Properties of Polymethyl Methacrylate and Stainless-Steel Joints[J]. Chinese Journal of Lasers, 2017(12): 89 − 96.
|
Wahba M, Kawahito Y, Katayama S. Laser direct joining of AZ91D thixomolded Mg alloy and amorphous polyethylene terephthalate[J]. Journal of Materials Processing Technology, 2011, 211(6): 1166 − 1174. doi: 10.1016/j.jmatprotec.2011.01.021
|
Tillmann W, Elrefaey A, Toward L. Toward process optimization in laser welding of metal to polymer[J]. Materialwissenschaft und Werkstofftechnik, 2010, 41(10): 879 − 883. doi: 10.1002/mawe.201000674
|
Chen Y J, Yue T M, Guo Z N, A new laser joining technology for direct-bonding of metals and plastics[J]. Materials & Design, 2016, 110: 775–781.
|
Chen Y J, Yue T M, Guo Z N. Laser joining of metals to plastics with ultrasonic vibration[J]. Journal of Materials Processing Technology, 2017, 249: 441 − 451. doi: 10.1016/j.jmatprotec.2017.06.036
|
Wang X, Song X H, Jiang M F, et al. Modeling and optimization of laser transmission joining process between PET and 316L stainless steel using response surface methodology[J]. Optics and Laser Technology, 2012, 44(3): 656 − 663. doi: 10.1016/j.optlastec.2011.09.018
|
Avila-Orta C, Espinoza-Gonzalez C, Martinez-Colunga G, et al. An overview of progress and current challenges in ultrasonic treatment of polymer melts[J]. Advances in Polymer Technology, 2013, 32: E582 − E602. doi: 10.1002/adv.21303
|
[1] | MA Nüjie, GAO Xiangdong, DAI Xinxin, ZHANG Nanfeng. Magnetic field characteristic simulation and magneto-optical imaging detection of weld cracks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 77-81. DOI: 10.12073/j.hjxb.2019400239 |
[2] | CHEN Yuquan, GAO Xiangdong. Neural network compensation for micro-gap weld detection by magneto-optical imaging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 33-36. |
[3] | MO Ling, GAO Xiangdong, XIAO Zhenlin, CHEN Xiaohui. Weld detection of laser welding using magneto-optical color imaging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(1): 37-40. |
[4] | GAO Xiangdong, LIU Yi, ZHANG Chi. Recognition of magneto-optical image of micro-gap weld using fractal dimension method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(12): 11-14. |
[5] | GAO Xiangdong, ZHEN Renhe. A method to detect micro weld gap based on magneto-optical imaging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(4): 11-14. |
[6] | YAN Xiaocheng, LI Zhiyong, GUO Yong, LI Yan. Correlation dimension analysis of current in GMAW welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (5): 65-68. |
[7] | GAO Fei, WANG Kehong, LIANG Yongshun, ZHAN Lanlan, ZHANG Yan. A multi-scale fractal image segmentation method for arc welding pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (11): 33-36. |
[8] | LIU Pengfei, SHAN Ping, LUO Zhen. Detection method of spot welding based on fractal and support vector machine[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 38-42. |
[9] | WU Hua-zhi, GUO Hai-ding, GAO De-ping, XU kai-wang. Establishment of fatigue Fractal damage evolution equation on TC11 Ti alloy welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 93-95,107. |
[10] | WU Hua-zhi, Guo Hai-ding, Gao De-ping. Fractal damage evolution model of low-cycled fatigue in welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (1): 88-90. |
1. |
刘许亮. 基于改进粒子滤波的焊缝磁光成像增强. 电子器件. 2023(01): 96-102 .
![]() | |
2. |
税法典,陈世强. 基于机器视觉的数据线焊接缺陷检测. 无损检测. 2023(08): 67-72 .
![]() | |
3. |
刘倩雯,叶广文,马女杰,高向东. 焊接微缺陷磁光成像检测有限元分析. 精密成形工程. 2022(03): 94-101 .
![]() | |
4. |
代欣欣,高向东,郑俏俏,季玉坤. 焊缝缺陷磁光成像模糊聚类识别方法. 焊接学报. 2021(01): 54-57+101 .
![]() | |
5. |
王付军,刘兰英. 基于微焦点X射线的SMT焊点缺陷检测仿真. 计算机仿真. 2020(09): 428-431 .
![]() | |
6. |
甄任贺,熊建斌,周卫. 基于磁荷理论的微间隙焊缝磁光成像规律研究. 电焊机. 2019(07): 84-88 .
![]() | |
7. |
陈廷艳,梁宝英,罗瑜清. 基于神经网络的焊缝宽度预测方法研究. 机电信息. 2019(30): 88-89+91 .
![]() | |
8. |
王春草,高向东,李彦峰,张南峰. 磁光成像无损检测方法的研究现状与展望. 制造技术与机床. 2019(11): 31-37 .
![]() | |
9. |
王春草,高向东,李彦峰,张南峰. 磁光成像无损检测方法的研究现状与展望. 制造技术与机床. 2019(11): 31-37 .
![]() | |
10. |
张佳莹,丛森,刚铁,林尚扬. 基于频率–相位编码信号激励的焊缝超声检测分析. 焊接学报. 2018(07): 7-11+41+129 .
![]() |