Advanced Search
TAO Yong, WANG Rui, SONG Kuijing, LIU Dashuang, ZHONG Zhihong, WU Yucheng. Interfacial microstructure and mechanical properties of B4C matrix composite joints diffusion bonded with Ti interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 29-35. DOI: 10.12073/j.hjxb.20210802001
Citation: TAO Yong, WANG Rui, SONG Kuijing, LIU Dashuang, ZHONG Zhihong, WU Yucheng. Interfacial microstructure and mechanical properties of B4C matrix composite joints diffusion bonded with Ti interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 29-35. DOI: 10.12073/j.hjxb.20210802001

Interfacial microstructure and mechanical properties of B4C matrix composite joints diffusion bonded with Ti interlayer

More Information
  • Received Date: August 01, 2021
  • Available Online: January 23, 2022
  • Boron carbide (B4C) matrix composites are widely used in the manufacture of bulletproof armor, atomic reactor, wear and high temperature resistant structural materials due to their high hardness, high melting point, good wear resistance, oxidation resistance and neutron absorption ability. In this paper, B4C matrix composites(B4C-SiC-TiB2) were diffusion bonded with intermediate layer Ti foil. The effects of bonding temperature on the microstructure of bonding interface and mechanical properties of joint were studied. The results show that B4C-SiC-TiB2 composites are successfully diffusion bonded at bonding temperature 1 300-1 450 ℃, and Ti reacts with B4C to form TiB2 and TiC. With the increasing of bonding temperature, the reaction layer becomes thicker, but too thick reaction layer will adversely affect the shear strength of the joint. The average thickness of the reaction layer is about 5 μm when the bonding temperature is 1 300 ℃. The highest joint shear strength (100 MPa) is obtained. The reaction layer is composed of TiB2 and TiC with high hardness (25.4 GPa) at bonding temperature 1 450 ℃.
  • 鲜亚疆. 铝基碳化硼复合材料的HIP制备和界面结构及辐照稳定性研究[D]. 北京: 中国工程物理研究院, 2018.

    Xian Yajiang. HIP preparation, interface structure and irradiation stability of aluminum-based boron carbide composites[D]. Beijing: China Academy of Engineering Physics, 2018.
    范思洋. 碳化硼基双层复合防弹材料的制备与性能[D]. 沈阳: 东北大学, 2015.

    Fan Siyang. Preparation and properties of boron carbide-based double-layer composite bulletproof material[D]. Shenyang: Northeast University, 2015.
    曹仲文. 碳化硼材料在核反应堆中的应用与发展[J]. 辽宁化工, 2006(8): 399 − 400.

    Cao Zhongwen. Application and development of boron carbide materials in nuclear reactors[J]. Liaoning Chemical Industry, 2006(8): 399 − 400.
    童攀, 林立, 王全兆,等. 颗粒尺寸对B4C增强铝基中子吸收材料界面反应与力学性能的影响[J]. 复合材料学报, 2019, 36(4): 163 − 183.

    Tong Pan, Lin Li, Wang Quanzhao, et al. Effect of particle size on interfacial reaction and mechanical properties of B4C reinforced aluminum-based neutron absorber[J]. Journal of Composite Materials, 2019, 36(4): 163 − 183.
    Wen Q, Tan Y Q, Zhong Z H, et al. High toughness and electrical discharge machinable B4C-TiB2-SiC composites fabricated at low sintering temperature[J]. Materials Science & Engineering A, 2018, 801: 338 − 343.
    赵其章, 陈铮, 邹家生. Al2O3/Ti/Cu瞬间液相连接中的界面反应[J]. 江苏科技大学学报, 2001, 15(2): 8 − 11.

    Zhao Qizhang, Chen Zheng, Zou Jiasheng. Interfacial reaction in transient liquid phase bonding of Al2O3/Ti/Cu[J]. Journal of Jiangsu University of Science and Technology, 2001, 15(2): 8 − 11.
    Li H X , Zhong Z H , Zhang H B , et al. Microstructure characteristic and its influence on the strength of SiC ceramic joints diffusion bonded by spark plasma sintering[J]. Ceramics International, 2018, 44(4): 3937 − 3946.
    Wang Z Q, Li H X, Zhong Z H, et al. In-situ formation of fine-grained carbide composite interlayer during diffusion bonding of SiC ceramic[J]. Journal of Alloys and Compounds, 2018, 863: 885 − 882.
    Purcek G, Saray O, Kul O, et al. Mechanical and wear properties of ultrafine-grained pure Ti produced by multi-pass equal-channel angular extrusion[J]. Materials Science & Engineering A, 2009, 518(1-2): 98 − 104.
    Lin Q L, Sui R. Wetting of B4C by molten Ni-Ti alloys at 1853K[J]. Journal of Alloys and Compounds, 2013, 588: 38 − 43.
    刘坤,李亚江,王娟. Super-Ni叠层复合材料与钛合金过渡液相扩散焊界面组织特征[J]. 焊接学报, 2018, 39(6): 57 − 60.

    Liu Kun, Li Yajiang, Wang Juan. Microstructure characteristics of interface between super-Ni laminated composite and titanium alloy in transition liquid phase diffusion welding[J]. Journal of Welding, 2018, 39(6): 57 − 60.
    Wang W, Dahl M, Yin Y. Hollow nanocrystals through the nanoscale Kirkendall effect[J]. Chemistry of Materials, 2013, 25(8): 1179 − 1189. doi: 10.1021/cm3030928
    Wang Z Q, Li H X, Zhong Z H, et al. Microstructure and mechanical properties of SiC joint with an in-situ formed SiC-TiB2 composite interlayer[J]. Materials Science and Engineering A, 2018, 835: 104 − 113.
  • Related Articles

    [1]YANG Jinghong, LIU Jiakun, WEI Wenqing, YE Chaochao, LIU Yongsheng, ZHANG Lixia, LIU Qiming. Interfacial microstructure and properties of diffusion bonded joints of Ti3AlC2 ceramic and Ni[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(9): 103-109. DOI: 10.12073/j.hjxb.20230914001
    [2]WANG Ruiping, XIAO Zonglin, YANG Xu, WANG Zeming, WANG Ying, YANG Zhenwen. Microstructures and properties of Zr-4 alloy diffusion bonding joint with Nb interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(8): 33-40. DOI: 10.12073/j.hjxb.20230720001
    [3]LI Defu, WANG Xijing, ZHAO Zaolong, XU Qiuping. Microstructure and mechanical properties of friction plug repair welding joint by shoulder auxiliary heating for 6082 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 36-41. DOI: 10.12073/j.hjxb.20210325002
    [4]SONG Xiaoguo, WANG Meirong, LIN Xingtao, LIU Jiakun, CAO Jian, FENG Jicai. Effect of bonding temperature on interfacial microstructure and properties of TiAl/Ti_3AlC_2 joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(10): 9-12.
    [5]CAO Jian, SONG Xiaoguo, WANG Yifeng, FENG Jicai. Interfacial microstructure and properties of Si3N4/Ni/TiAl joint boned by diffusion-bonding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (6): 1-4.
    [6]LI Zhuoran, YU Kang, LIU Bing, FENG Jicai. Microstructure and properties of GH4169 vacuum diffusion bonded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (11): 13-16.
    [7]LI Hongmei, SUN Daqian, WANG Wenquan, XUAN Zhaozhi, REN Zhenan. Microstructure and mechanical properties of austenite stainless steel wire joints welded by laser[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (6): 71-74.
    [8]ZHANG Weihua, QIU Xiaoming, CHEN Xiaowei, ZHAO Xihua, SUN Daqian, LI Yongqiang. Microstructure and mechanical property of transient liquid phase bonded aluminum silicon alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (2): 121-124.
    [9]WANG Da-yong, FENG Ji-cai, GUO De-lun, LUAN Guo-hong, GUO He-ping, SUN Cheng-bin. Effect of welding speed on microstructure and mechanical property of high-strength aluminum alloy friction stir weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (1): 71-73.
    [10]SUN Da-qian, LIU Wei-hong, WU Jian-hong, JIA Shu-sheng, XU Yue. Microstructure and Mechanical Property of Transient Liquid Phase Bonded Aluminium-Based Metal Matrix Composite Joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (5): 65-68.
  • Cited by

    Periodical cited type(2)

    1. 钟志宏,袁东立,朱文静,魏仁伟,宋奎晶,吴玉程. B_4C-TiB_2-SiC-TiC复合陶瓷钎焊接头微观组织与力学性能. 稀有金属材料与工程. 2024(04): 1086-1094 .
    2. 杨晶,薛鹏,张永锋,房旭,江晨雨,石凯. 碳化硼陶瓷与高氮钢钎焊接头组织和性能. 焊接学报. 2024(05): 113-118 . 本站查看

    Other cited types(2)

Catalog

    Article views (286) PDF downloads (27) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return