Citation: | YANG Jinghong, LIU Jiakun, WEI Wenqing, YE Chaochao, LIU Yongsheng, ZHANG Lixia, LIU Qiming. Interfacial microstructure and properties of diffusion bonded joints of Ti3AlC2 ceramic and Ni[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(9): 103-109. DOI: 10.12073/j.hjxb.20230914001 |
The Ti3AlC2 ceramic and Ni were successfully joined by diffusion bonding technique. The microstructure and element distribution of the joint were analyzed by SEM and TEM. The diffusion mechanism of Ni and the forming mechanism of joint were investigated. The results show that the enrichment of Ni elements adjacent to the Ti3AlC2 ceramic led to a diffusion in the interface, which could promote the formation of joint. The typical interfacial microstructure of the Ni/Ti3AlC2 ceramic joint obtained at 900 ℃ for 60 min is Ni/Ni3(Al,Ti)+AlNi2Ti+TiC/Ti3AlC2 ceramic. It was found that the shear strength of the joint increased with increasing bonding temperature. When the temperature further elevated, the shear strength dramatically decreased. The maximum shear strength is 94.4 MPa at 900 ℃ for 60 min.
[1] |
Lapauw T, Halim J, Lu J, et al. Synthesis of the novel Zr3AlC2 MAX phase[J]. Journal of the European Ceramic Society, 2016, 36(3): 943 − 947.
|
[2] |
Barsoum M W, El-Raghy T. The MAX phases: unique new carbide and nitride materials[J]. American Scientist, 2001, 89(4): 334 − 343. doi: 10.1511/2001.28.334
|
[3] |
Pietzka M A, Schuster J C. Summary of constitutional data on the Al-C-Ti system[J]. Journal of Phase Equilibria, 1994, 15(4): 392 − 400. doi: 10.1007/BF02647559
|
[4] |
Nikolay V, Tzenov W, Barsoum M. Synthesis and characterization of Ti3AlC2[J]. Journal of the American Ceramic Society, 2000, 83(4): 825 − 832. doi: 10.1111/j.1151-2916.2000.tb01281.x
|
[5] |
Wang X, Zhou Y. Solid–liquid reaction synthesis of layered machinable Ti3AlC2 ceramic[J]. Journal of Materials Chemistry, 2002, 12(3): 455 − 460. doi: 10.1039/b108685e
|
[6] |
Pshyk A V, Coy E, Kempiński M, et al. Low-temperature growth of epitaxial Ti2AlC MAX phase thin films by low-rate layer-by-layer PVD[J]. Materials Research Letters, 2019, 7(6): 244 − 250. doi: 10.1080/21663831.2019.1594428
|
[7] |
Basu S, Ozaydin M F, Kothalkar A, et al. Phase and morphology evolution in high-temperature Ti3SiC2-NiTi diffusion-bonded joints[J]. Scripta Materialia, 2011, 65(3): 237 − 240. doi: 10.1016/j.scriptamat.2011.04.015
|
[8] |
张华, 翟洪祥, 黄振莺. Ti3AlC2与Cu合金的电弧焊接[C]//全国高技术陶瓷学术年会, 2008, 73 − 75.
Zhang Hua, Zhai Hongxiang , Huang Zhenying . Arc welding of Ti3AlC2 and Cu alloy [C]//National High tech Ceramic Academic Annual Conference, 2008, 73 − 75.
|
[9] |
Wang G C, Zhang J, Liu X W. Characterizing the decomposition of Ti2AlC during its brazing with Cu by using Ag-Cu filler alloy[J]. Materials Science Forum, 2013, 762: 607 − 611. doi: 10.4028/www.scientific.net/MSF.762.607
|
[10] |
王颖, 夏永红, 杨振文, 等. Ti3SiC2陶瓷与TC4合金钎焊接头微观组织及性能[J]. 稀有金属材料与工程, 2019(9): 3041 − 3047.
Wang Ying, Xia Yonghong, Yang Zhenwen, et al. Interfacial microstructure and properties of brazed joints of Ti3SiC2 ceramic and TC4 alloy[J]. Rare Metal Materials and Engineering, 2019(9): 3041 − 3047.
|
[11] |
Zhang J, Wang G C, Zheng Y. Effect of Sn content on the microstructure, mechanical and electrical properties of Ti2AlC/Cu joints brazed with Cu-Sn-Ti filler alloy[J]. Materials Science Forum, 2013, 762(5): 602 − 606.
|
[12] |
Li A, Zhou Y. Joining of Ti3SiC2 by magnetron sputtering a layer of Cu or Zr followed by heat treating at relatively low temperatures[J]. Journal of the American Ceramic Society, 2011, 94(9): 3072 − 3077. doi: 10.1111/j.1551-2916.2011.04566.x
|
[13] |
Yin X H, Zhou Y C. Direct diffusion bonding of Ti3SiC2 and Ti3AlC2[J]. Materials Research Bulletin, 2009, 44(6): 1379 − 1384. doi: 10.1016/j.materresbull.2008.12.002
|
[14] |
Yin X H, Zhou Y C. Diffusion bonding of Ti3AlC2 ceramic via a Si interlayer[J]. Journal of Materials Science, 2007, 42(17): 7081 − 7085. doi: 10.1007/s10853-006-1491-8
|
[15] |
Yin X H, Li M S, Zhou Y C. Microstructure and mechanical strength of transient liquid phase bonded Ti3SiC2 joints using Al interlayer[J]. Journal of the European Ceramic Society, 2007, 27: 3539 − 3544. doi: 10.1016/j.jeurceramsoc.2007.01.012
|
[16] |
Tan J, Han H, Wickramaratne D, et al. A comparative first-principles study of the electronic, mechanical, defect and acoustic properties of Ti2AlC and Ti3AlC[J]. Journal of Physics D-Applied Physics, 2014, 47(21): 2153011 − 2153018.
|
[17] |
Hone J, Batlogg B, Benes Z, et al. Quantized phonon spectrum of single-wall carbon nanotubes[J]. Science, 2000, 289(5485): 1730 − 1733. doi: 10.1126/science.289.5485.1730
|
[18] |
Konar A, Pandey Rajan K, Ethirajan Tamilmani. Carrier transport in layered nanolaminated carbides[J]. Physics, 2015, 122(15): 1 − 7.
|
[19] |
Wilhelmsson O, Palmquist J P, Lewin E, et al. Deposition and characterization of ternary thin films within the Ti-Al-C system by DC magnetron sputtering[J]. Journal of Crystal Growth, 2007, 291(1): 290 − 300.
|
[20] |
Witusiewicz V T, Hallstedt B, Bondar A A, et al. Thermodynamic description of the Al-C-Ti system[J]. Journal of Alloys & Compounds, 2015, 623(25): 480 − 496.
|
1. |
李田,严佑锐凌,张明军,张跃敏. 基于8字形摆动的钢/铝激光焊接头组织和性能. 焊接学报. 2025(02): 112-119+135 .
![]() | |
2. |
王一丰,张忠明,马威龙,祁嘉伟,徐春杰,杨长林. 基于二次通用旋转组合设计的冷金属过渡电弧增材制造AZ31镁合金焊道截面尺寸研究. 热加工工艺. 2024(05): 18-23 .
![]() | |
3. |
弭光宝,孙若晨,吴明宇,谭勇,邱越海,李培杰,黄旭. 航空发动机钛合金分子动力学计算技术研究进展. 航空材料学报. 2024(02): 87-103 .
![]() | |
4. |
张群兵,张阔,于佳恩,张勇进,陈旭飞,陈立明,张建勋. Ti60钛合金激光焊接接头微观组织与低周疲劳性能研究. 西安航空学院学报. 2024(05): 25-32+70 .
![]() |