Advanced Search
DONG Xianchun, ZHANG Nan, ZHANG Xiazhou, TIAN Zhiling. Analysis of reheat embrittlement and softening of coarse-grained zone of Q960E welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 56-62. DOI: 10.12073/j.hjxb.20210702002
Citation: DONG Xianchun, ZHANG Nan, ZHANG Xiazhou, TIAN Zhiling. Analysis of reheat embrittlement and softening of coarse-grained zone of Q960E welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 56-62. DOI: 10.12073/j.hjxb.20210702002

Analysis of reheat embrittlement and softening of coarse-grained zone of Q960E welding joint

More Information
  • Received Date: July 01, 2021
  • Available Online: April 01, 2022
  • In order to accurately obtain the microstructure and properties of the welding heat affected zone under different temperature gradient conditions, two simulated thermal cycle tests were carried out on a low carbon equivalent Q960E and its comparative steel by using the welding thermal simulation method. And the microstructures of CGHAZ after the first thermal simulation, and UA CGHAZ, SCR CGHAZ, ICR CGHAZ and SR CGHAZ after the second thermal simulation were obtained. Microstructures were analyzed, impact toughness test and hardness characterization were carried out in this paper. Results showed that both ICR CGHAZ and SR CGHAZ of Q960E and comparative steel had reheat embrittlement sensitivity. The impact toughness of SR CGHAZ of comparative steel was as low as 9 J at −40 ℃. And the distribution of point-type and strip-type carbides formed at the grain boundary was the main reason for reheating embrittlement. The softening of SR CGHAZ with low carbon equivalent Q960E is the most serious, which is caused by the combined loss of fine-grain strengthening, dislocation strengthening and precipitation strengthening.
  • Joseph C, Benedyk. Light metal in automotive applications[J]. Light Metal Age, 2000, 58(10): 34 − 35.
    张楠, 田志凌, 董现春, 等. Q960E热影响粗晶区疲劳寿命与ΔKth值的关系分析[J]. 焊接学报, 2018, 39(7): 106 − 110.

    Zhang Nan, Tian Zhiling, Dong Xianchun, et al. Research on relationship between ΔKth and fatigue life of heat-affected coarse grain zone in Q960E[J]. Transactions of the China Welding Institution, 2018, 39(7): 106 − 110.
    Zhou Y L, Jia T, Zhang X J, et al. Microstructure and toughness of the CGHAZ of an offshore platform steel[J]. Journal of Materials Processing Technology, 2015, 219: 314 − 320.
    Lambert A, Drillet J, Gourgues A F, et al. Microstructure of mattensite-austensite constituents in heat affected zones of high strength low alloy steel welds in relation to toughness properties[J]. Science and Technology of Welding and Joining, 2000, 5(3): 168 − 173.
    Davis C L, King J E. Cleavage initiation in the intercritically reheated coarse-grained heat-affected zone: Part I. fractographiv evidence[J]. Metallurgical and Materials Transactions A, 1994, 25(3): 563 − 573.
    Wang C M, Wu X F, Liu J, et al. Transmission electron microscopy of martensite/austensite islands in pipeline steel X70[J]. Materials Science and Engineering A, 2006, 438(25): 257 − 271.
    张楠, 田志凌, 张书彦, 等. 700MPa微合金高强钢焊接软化机理及解决方案[J]. 钢铁研究学报, 2019, 31(3): 318 − 326.

    Zhang Nan, Tian Zhiling, Zhang Shuyan, et al. Mechanism and solution of welding softening for 700MPa microalloyed high strength steel[J]. Journal of Iron and Steel Research, 2019, 31(3): 318 − 326.
    董现春, 潘辉, 赵阳, 等. 仿弹钢板激光焊接接头的组织和性能[J]. 材料热处理学报, 2019, 40(9): 163 − 168.

    Dong Xianchun, Pan Hui, Zhao Yang, et al. Microstructure and properties of laser welded joint of bulletproof steel plant[J]. Transactions of Materials and Heat Treatment, 2019, 40(9): 163 − 168.
    王学, 常建伟, 黄关政, 等. WB36钢临界再热粗晶区组织和性能[J]. 焊接学报, 2008, 29(10): 29 − 32.

    Wang Xue, Chang Jianwei, Huang Guanzheng, et al. Study on microstructure and properties of IRCGHAZ in WB36 steel[J]. Transactions of the China Welding Institution, 2008, 29(10): 29 − 32.
    姚钦. HQ-80钢再热裂纹机理[J]. 焊接学报, 2004, 25(6): 77 − 81.

    Yao Qin. Mechanism of HQ-80 steel reheat crack[J]. Transactions of the China Welding Institution, 2004, 25(6): 77 − 81.
    Hu J, Du L X, Wang J J, et al. High toughness in the intercritically reheated coarse-grained (ICRCG) heat-affected zone (HAZ) of low carbon microalloyed steel[J]. Materials Science and Engineering A, 2014, 590: 323 − 328.
    张楠, 董现春, 张熹, 等. 钛微合金化SQ700MCD高强钢粗晶热影响区软化的原因[J]. 机械工程材料, 2012, 36(4): 88 − 92.

    Zhang Nan, Dong Xianchun, Zhang Xi, et al. The softening analysis of CGHAZ in Ti microalloyed SQ700MCD steel[J]. Materials for Mechanical Engineering, 2012, 36(4): 88 − 92.
    张楠, 董现春, 徐晓宁, 等. Ti-Nb微合金化高强钢的焊接接头组织和性能[J]. 材料热处理学报, 2014, 35(6): 115 − 120.

    Zhang Nan, Dong Xianchun, Xu Xiaoning, et al. Microstructure and property of welding joint with Ti-Nb microalloyed high-strength steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(6): 115 − 120.
    张楠, 董现春, 潘辉, 等. 高Ti-Nb系高强钢焊接接头回火前后的力学行为[J]. 焊接学报, 2015, 36(5): 93 − 98.

    Zhang Nan, Dong Xianchun, Pan Hui, et al. Mechanical behavior of welded joint of a high Ti-Nb content microalloyed high-strength steel before and after drawing temper treatment[J]. Transactions of the China Welding Institution, 2015, 36(5): 93 − 98.
    张楠, 田志凌, 张书彦, 等. 感应回火对含钒900MPa级高强钢组织与性能的影响[J/OL]. 热加工工艺: 1-5[2020-11-11]. https://doi.org/10.14158/j.cnki.1001-3814.20193019.

    Zhang Nan, Tian Zhiling, Zhang Shuyan, et al. Effects of induction tempering on microstructure and properties of 900 MPa grade high strength steel containing vanadium[J/OL]. Hot Working Technology: 1-5 [2020-11-11]. https://doi.org/10.14158/j.cnki.1001-3814.20193019.
    李晓林, 崔阳, 肖宝亮, 等. V-N微合金钢在线快速感应回火工艺中V(C, N)析出强化机制[J]. 金属学报, 2018, 54(10): 1368 − 1376. doi: 10.11900/0412.1961.2018.00119

    Li Xiaolin, Cui Yang, Xiao Baoliang, et al. Effect of on-line rapid induction tempering on precipitation strengthening mechanism of V(C, N) in V-N microalloyed steel[J]. ACTA Metallurgica Sinica, 2018, 54(10): 1368 − 1376. doi: 10.11900/0412.1961.2018.00119
    Mohseni P, Solberg J K, Karlsen M, et al. Investigation of mechanism of cleavage fracture initiation in intercritically coarse grained heat affected zone of HSLA steel[J]. Materials Science and Technology, 2012, 28(11): 1261 − 1268.
    Moeinifar S, Kokabi A H, Hosseini H R M. Influence of peak temperature during simulation and real thermal cycles on microstructure and fracture properties of the reheated zones[J]. Materials and Design, 2010, 31(6): 2948 − 2955.
    李永亮. 700 MPa级高强度汽车大梁钢成分设计与组织控制研究[D]. 北京: 北京科技大学, 2017.

    Li Yongliang. Study on composition design and microstrucyure control about 700 MPa grade high strength beam steel for vehicles [D].Beijing: University of Science and Technology Beijing, 2017.
    雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006.

    Yong Qilong. Secondary phases in steels [M]. Beijing: Metallurgical Industry Press, 2006.
  • Related Articles

    [1]GAO Wenqiang, XU Fei, MA Xuyi, GUO Luyun, LU Yiting. The effect of heat input on the microstructure and mechanical properties of 7075-T6 ultra-high strength aluminum alloy weld by laser wire filling welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 128-136. DOI: 10.12073/j.hjxb.20231215002
    [2]ZHANG Kezhao, CAI Jiameng, LIU Dong, CHEN Jinyi, BAO Yefeng, NIU Hongzhi. Effect of wire feed rate on microstructure and properties of laser welded Ti-3Al-6Mo-2Fe-2Zr joints with filler wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 35-40. DOI: 10.12073/j.hjxb.20211106001
    [3]QIN Hang, CAI Zhihai, ZHU Jialei, WANG Kai, LIU Jian. Microstructure and properties of TC4 titanium alloy by direct underwater laser beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 143-148. DOI: 10.12073/j.hjxb.2019400328
    [4]XU Fei, CHEN Li, GUO Luyun. Effects of filler wire on microstructure and mechanical properties for fiber laser welding 6A02 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 92-96. DOI: 10.12073/j.hjxb.2018390208
    [5]CAI Hua, LIN Kaili, XIAO Rongshi. Process and microstructure properties of laser beam welding of thin 2524 aluminum alloy sheet with filler wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(4): 24-28.
    [6]DU Borui, TIAN Xiangjun, WANG Huaming. Microstructure and mechanical properties of MIG welded joint of laser melting deposited TA15 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 65-68.
    [7]HE Enguang, GONG Shuili, YANG Tao, CHEN Li. Microstructure and properties of 5A90 Al-Li alloy T-joints by laser welding with filler wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (9): 99-102.
    [8]CHENG Donghai, HUANG Jihua, YANG Jing, ZHANG Hua, GUO Heping. Analysis of microstructure and mechanical properties of laser welded lap joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (3): 85-88.
    [9]WANG Hongying, MO Shouxing, LI Zhijun. CO2 laser welding of AZ31 magnesium alloys with filler wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (6): 93-96.
    [10]YAO Wei, GONG Shui-li, CHEN Li. Microstructure and mechanical properties of laser welded joint of titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (2): 69-72,76.

Catalog

    Article views (400) PDF downloads (63) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return