Citation: | DONG Xianchun, ZHANG Nan, ZHANG Xiazhou, TIAN Zhiling. Analysis of reheat embrittlement and softening of coarse-grained zone of Q960E welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 56-62. DOI: 10.12073/j.hjxb.20210702002 |
Joseph C, Benedyk. Light metal in automotive applications[J]. Light Metal Age, 2000, 58(10): 34 − 35.
|
张楠, 田志凌, 董现春, 等. Q960E热影响粗晶区疲劳寿命与ΔKth值的关系分析[J]. 焊接学报, 2018, 39(7): 106 − 110.
Zhang Nan, Tian Zhiling, Dong Xianchun, et al. Research on relationship between ΔKth and fatigue life of heat-affected coarse grain zone in Q960E[J]. Transactions of the China Welding Institution, 2018, 39(7): 106 − 110.
|
Zhou Y L, Jia T, Zhang X J, et al. Microstructure and toughness of the CGHAZ of an offshore platform steel[J]. Journal of Materials Processing Technology, 2015, 219: 314 − 320.
|
Lambert A, Drillet J, Gourgues A F, et al. Microstructure of mattensite-austensite constituents in heat affected zones of high strength low alloy steel welds in relation to toughness properties[J]. Science and Technology of Welding and Joining, 2000, 5(3): 168 − 173.
|
Davis C L, King J E. Cleavage initiation in the intercritically reheated coarse-grained heat-affected zone: Part I. fractographiv evidence[J]. Metallurgical and Materials Transactions A, 1994, 25(3): 563 − 573.
|
Wang C M, Wu X F, Liu J, et al. Transmission electron microscopy of martensite/austensite islands in pipeline steel X70[J]. Materials Science and Engineering A, 2006, 438(25): 257 − 271.
|
张楠, 田志凌, 张书彦, 等. 700MPa微合金高强钢焊接软化机理及解决方案[J]. 钢铁研究学报, 2019, 31(3): 318 − 326.
Zhang Nan, Tian Zhiling, Zhang Shuyan, et al. Mechanism and solution of welding softening for 700MPa microalloyed high strength steel[J]. Journal of Iron and Steel Research, 2019, 31(3): 318 − 326.
|
董现春, 潘辉, 赵阳, 等. 仿弹钢板激光焊接接头的组织和性能[J]. 材料热处理学报, 2019, 40(9): 163 − 168.
Dong Xianchun, Pan Hui, Zhao Yang, et al. Microstructure and properties of laser welded joint of bulletproof steel plant[J]. Transactions of Materials and Heat Treatment, 2019, 40(9): 163 − 168.
|
王学, 常建伟, 黄关政, 等. WB36钢临界再热粗晶区组织和性能[J]. 焊接学报, 2008, 29(10): 29 − 32.
Wang Xue, Chang Jianwei, Huang Guanzheng, et al. Study on microstructure and properties of IRCGHAZ in WB36 steel[J]. Transactions of the China Welding Institution, 2008, 29(10): 29 − 32.
|
姚钦. HQ-80钢再热裂纹机理[J]. 焊接学报, 2004, 25(6): 77 − 81.
Yao Qin. Mechanism of HQ-80 steel reheat crack[J]. Transactions of the China Welding Institution, 2004, 25(6): 77 − 81.
|
Hu J, Du L X, Wang J J, et al. High toughness in the intercritically reheated coarse-grained (ICRCG) heat-affected zone (HAZ) of low carbon microalloyed steel[J]. Materials Science and Engineering A, 2014, 590: 323 − 328.
|
张楠, 董现春, 张熹, 等. 钛微合金化SQ700MCD高强钢粗晶热影响区软化的原因[J]. 机械工程材料, 2012, 36(4): 88 − 92.
Zhang Nan, Dong Xianchun, Zhang Xi, et al. The softening analysis of CGHAZ in Ti microalloyed SQ700MCD steel[J]. Materials for Mechanical Engineering, 2012, 36(4): 88 − 92.
|
张楠, 董现春, 徐晓宁, 等. Ti-Nb微合金化高强钢的焊接接头组织和性能[J]. 材料热处理学报, 2014, 35(6): 115 − 120.
Zhang Nan, Dong Xianchun, Xu Xiaoning, et al. Microstructure and property of welding joint with Ti-Nb microalloyed high-strength steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(6): 115 − 120.
|
张楠, 董现春, 潘辉, 等. 高Ti-Nb系高强钢焊接接头回火前后的力学行为[J]. 焊接学报, 2015, 36(5): 93 − 98.
Zhang Nan, Dong Xianchun, Pan Hui, et al. Mechanical behavior of welded joint of a high Ti-Nb content microalloyed high-strength steel before and after drawing temper treatment[J]. Transactions of the China Welding Institution, 2015, 36(5): 93 − 98.
|
张楠, 田志凌, 张书彦, 等. 感应回火对含钒900MPa级高强钢组织与性能的影响[J/OL]. 热加工工艺: 1-5[2020-11-11]. https://doi.org/10.14158/j.cnki.1001-3814.20193019.
Zhang Nan, Tian Zhiling, Zhang Shuyan, et al. Effects of induction tempering on microstructure and properties of 900 MPa grade high strength steel containing vanadium[J/OL]. Hot Working Technology: 1-5 [2020-11-11]. https://doi.org/10.14158/j.cnki.1001-3814.20193019.
|
李晓林, 崔阳, 肖宝亮, 等. V-N微合金钢在线快速感应回火工艺中V(C, N)析出强化机制[J]. 金属学报, 2018, 54(10): 1368 − 1376. doi: 10.11900/0412.1961.2018.00119
Li Xiaolin, Cui Yang, Xiao Baoliang, et al. Effect of on-line rapid induction tempering on precipitation strengthening mechanism of V(C, N) in V-N microalloyed steel[J]. ACTA Metallurgica Sinica, 2018, 54(10): 1368 − 1376. doi: 10.11900/0412.1961.2018.00119
|
Mohseni P, Solberg J K, Karlsen M, et al. Investigation of mechanism of cleavage fracture initiation in intercritically coarse grained heat affected zone of HSLA steel[J]. Materials Science and Technology, 2012, 28(11): 1261 − 1268.
|
Moeinifar S, Kokabi A H, Hosseini H R M. Influence of peak temperature during simulation and real thermal cycles on microstructure and fracture properties of the reheated zones[J]. Materials and Design, 2010, 31(6): 2948 − 2955.
|
李永亮. 700 MPa级高强度汽车大梁钢成分设计与组织控制研究[D]. 北京: 北京科技大学, 2017.
Li Yongliang. Study on composition design and microstrucyure control about 700 MPa grade high strength beam steel for vehicles [D].Beijing: University of Science and Technology Beijing, 2017.
|
雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006.
Yong Qilong. Secondary phases in steels [M]. Beijing: Metallurgical Industry Press, 2006.
|
[1] | HUANG Yong, GUO Wei, WANG Yanlei. Effects of introductions of oxygen and nitrogen elements on impact toughness of gas pool coupled activating TIG weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 83-89. DOI: 10.12073/j.hjxb.20210919001 |
[2] | YAN Han, ZHAO Di, QI Tongfu, LENG Xuesong, FU Kuijun, HU Fengya. Effect of element Nb on microstructures and impact toughness of CGHAZ in TiNbV micro-alloyed steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(12): 33-37. DOI: 10.12073/j.hjxb.20200906001 |
[3] | WANG Dongpo, LIU Kaiyue, DENG Caiyan, GONG Baoming, WU Shipin, XIAO Na. Effects of PWHT on the impact toughness and fracture toughness of the weld metal under restraint welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(8): 63-67, 78. DOI: 10.12073/j.hjxb.20190914001 |
[4] | CAO Rui, YANG Zhaoqing, LI Jinmei, LEI Wanqing, ZHANG Jianxiao, CHEN Jianhong. Influence of fraction of coarse-grained heat affected zone on impact toughness for 09MnNiDR welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 7-13. DOI: 10.12073/j.hjxb.20190818003 |
[5] | LIU Zhengjun, QIN Hua, SU Yunhai, LIU Changjun, LU Yanpeng. Microstructure and low temperature impact toughness of vibration assisted welded BWELDY960Q steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 93-96. |
[6] | DU Bing, SUN Fenglian, XU Yujun, LI Xiaoyu, LÜ Xiaochun, QIN Jian. Effect of welding methods on impact toughness of ultra-low carbon martensitic stainless steel welding wire deposited metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(8): 1-4. |
[7] | HU Jie, JIANG Zhizhong, HUANG Jihua, CHEN Shuhai, ZHAO Xingke, ZHANG Hua. Effects of heat treatment processes on microstructure and impact toughness of weld metal of vacuum electron beam welding on CLAM steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (11): 67-71. |
[8] | LIANG Guoli, YANG Shanwu, WU Huibin, LIU Xueli. Impact toughness of simulated CGHAZ with high heat input for adding trace Zr oil tank steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (11): 85-88. |
[9] | XUE Gang, ZHAO Fuchen, JING Yanhong, NIU Jicheng, ZHANG Yonghui, GAI Dengyu. Effect of carbon on impact toughness of metal deposited with high strength austenite electrodes[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (8): 89-92. |
[10] | Ma Jin. EFFECT OF TRACE BORON ON IMPACT TOUGHNESS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1988, (3): 155-161. |
1. |
魏世同,孙健,刘景武,陆善平. V含量及回火工艺对高强钢TIG焊熔敷金属组织性能的影响. 焊接学报. 2020(11): 1-6+97 .
![]() | |
2. |
武凤娟,程丙贵,刘东升,曲锦波. TMCP高强韧F460厚板及焊接接头的组织和性能. 上海金属. 2018(05): 21-27 .
![]() |