Advanced Search
WEI Shitong, SUN Jian, LIU Jingwu, LU Shanping. Effect of V content and tempering treatment on microstructure and mechanical properties of the high strength steel TIG weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(11): 1-6. DOI: 10.12073/j.hjxb.20200116001
Citation: WEI Shitong, SUN Jian, LIU Jingwu, LU Shanping. Effect of V content and tempering treatment on microstructure and mechanical properties of the high strength steel TIG weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(11): 1-6. DOI: 10.12073/j.hjxb.20200116001

Effect of V content and tempering treatment on microstructure and mechanical properties of the high strength steel TIG weld metal

More Information
  • Received Date: January 15, 2020
  • Available Online: October 21, 2020
  • Four kinds of welding wires with different V contents were used to weld the high strength steel plates by tungsten inert gas welding method. After welding, the weld metals of different welding wires were tempered at 640 ℃ for 2 h. The effects of V content and tempering treatment on microstructure and mechanical properties of weld metal were studied. The results show that for the as-welded and as-tempered weld metals, with the increase of V content, the strength increases and the elongation and impact energy decrease. Furthermore, after tempering treatment, M2C carbide precipitated at the grain boundary of the V-free weld metal, while VC precipitated in V-bearing weld metals. During the post weld tempering process, the effect of dislocation recovery on matrix softening is stronger than precipitation strengthening of M2C and VC. Therefore, under the combined effects of the two factors, the tempering treatment decreases the strength and improves the elongation and impact energy. The dispersed VC precipitates have the effect of hindering dislocation movement, which causes that the V-bearing weld metal retains high dislocation density after tempering. In practical application, V content and post weld tempering process should be selected reasonably according to the performance requirements of weld metal.
  • 文明月, 董文超, 庞辉勇, 等. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究[J]. 金属学报, 2018, 54(4): 501 − 511.

    Wen Mingyue, Dong Wenchao, Pang Huiyong, et al. Microstructure and Impact toughness of welding heat-affected zones of a Fe-Cr-Ni-Mo high strength steel[J]. Acta Metallurgica Sinica, 2018, 54(4): 501 − 511.
    王长军, 梁剑雄, 刘振宝, 等. 亚稳奥氏体对低温海工用钢力学性能的影响与机理[J]. 金属学报, 2016, 52(4): 385 − 393. doi: 10.11900/0412.1961.2015.00312

    Wang Changjun, Liang Jianxiong, Liu Zhenbao, et al. Effect of metastable austenite on mechanical property and mechanism in cryogenic steel applied in oceaneering[J]. Acta Metallurgica Sinica, 2016, 52(4): 385 − 393. doi: 10.11900/0412.1961.2015.00312
    Zhou Yanlei, Jia Tao, Zhang Xiangjun, et al. Microstructure and toughness of the CGHAZ of an offshore platform steel[J]. Journal of Materials Processing Technology, 2015, 219: 314 − 320. doi: 10.1016/j.jmatprotec.2014.12.017
    张熹, 张楠, 刘宏, 等. 母材熔合作用对EQ51海工钢焊缝组织及韧性的影响[J]. 焊接学报, 2016, 37(12): 125 − 128.

    Zhang Xi, Zhang Nan, Liu Hong, et al. Fusion effect on weld joint microstructure and toughness of EQ51 ocean engineering steel[J]. Transactions of the China Welding Institution, 2016, 37(12): 125 − 128.
    Li Hongliang, Liu Duo, Tang Dongyan, et al. Microstructure and mechanical properties of E36 steel joint welded by underwater wet welding[J]. China Welding, 2016, 25(1): 30 − 35.
    Haslberger P, Holly S, Ernst W, et al. Microstructure and mechanical properties of high-strength steel welding consumables with a minimum yield strength of 1100 MPa[J]. Journal of Materials Science, 2018, 53(9): 6968 − 6979. doi: 10.1007/s10853-018-2042-9
    Holly S, Haslberger P, Zügner D, et al. Development of high-strength welding consumables using calculations and microstructural characterisation[J]. Welding in the World, 2018, 62(3): 451 − 458. doi: 10.1007/s40194-018-0562-1
    Ju Yulin, Goodall Aimee, Strangwood Martin, et al. Characterisation of precipitation and carbide coarsening in low carbon low alloy Q & T steels during the early stages of tempering[J]. Materials Science and Engineering: A, 2018, 738: 174 − 189. doi: 10.1016/j.msea.2018.09.044
    Williamson G K, Smallman R E. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum[J]. Philosophical Magazine, 1956, 1(1): 34 − 46. doi: 10.1080/14786435608238074
    Yan Jiacheng, Xu Hongwei, Zuo Xiaowei, et al. Strategies for strengthening-ductility and hierarchical co-precipitation in multicomponent nano-precipitated steels by Cu partitioning[J]. Materials Science and Engineering: A, 2019, 739: 225 − 234. doi: 10.1016/j.msea.2018.10.036
    Xu S S, Zhao Y, Chen D, et al. Nanoscale precipitation and its influence on strengthening mechanisms in an ultra-high strength low-carbon steel[J]. International Journal of Plasticity, 2019, 113: 99 − 110. doi: 10.1016/j.ijplas.2018.09.009
  • Related Articles

    [1]ZHANG Lei, LIU Changqing, YU Jingwei, HU Xihai, GONG Feng, JIN Guangri. Numerical analysis of microstructure evolution of coarse grained zone in sidewall during narrow gap submerged arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(4): 103-106.
    [2]ZHANG Lei, QIN Guoliang, ZHANG Chunbo, ZHAO Yushan, ZHOU Jun. Numerical simulation of radial friction welding temperature field of steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 32-36.
    [3]ZHANG Xiaoqi, XU Guocheng, WANG Chunsheng, WEN Jing. Numerical simulation of the temperature field during resistance spot welding with rectangular electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 101-104.
    [4]HU Jun-feng, YANG Jian-guo, FANG Hong-yuan, LI Guang-min, CHEN Wei. Temperature field of arc gouging and its influence on microstructures[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (5): 93-96.
    [5]HAN Guo-ming, LI Jian-qiang, YAN Qing-liang. Modeling and simulating of temperature field of laser welding for stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (3): 105-108.
    [6]DU Han-bin, HU Lun-ji, WANG Dong-cuan, SUN Cheng-zhi. Simulation of the temperature field and flow field in full penetration laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 65-68,100.
    [7]LEI YU-cheng, ZHANG Cheng, CHENG Xiao-nong, HU Xiao-jun, FENG Ya-ming. Calculated GMAW temperature field based on ANSYS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (4): 31-34.
    [8]XU Wen-li, MENG Qing-gno, FANG Hong-yuan, XU Guang-yin. Temperature field of high strength aluminum ahoy sheets by twin wire welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (3): 11-14.
    [9]XUE Zhong ming, GU Lan, ZHANG Yan hua. Numerical simulation on temperature field in laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (2): 79-82.
    [10]Zou Zengda, Wang Xinhong, Qu Shiyao. Numerical Simulation of Temperature Field for Weld-repaired Zone of White Cast Iron[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (1): 24-29.
  • Cited by

    Periodical cited type(5)

    1. 高震贤. 窄间隙埋弧焊热—力耦合有限元建模及残余应力分析. 锻压装备与制造技术. 2023(05): 123-126 .
    2. 王云,梁民航,赵朋成,王璐璐. 厚板埋弧焊接头焊后感应热处理应力场的数值分析. 机械制造与自动化. 2022(02): 49-51+56 .
    3. 张磊,王博健,付傲,郑永杰,刘满雨,孟显伟,宋扬. 跟踪系统在窄间隙埋弧焊中的应用现状. 电焊机. 2022(07): 52-61 .
    4. 张磊,王博健,刘满雨,白德滨,付傲,张晴. 窄间隙埋弧焊机信息化管理系统. 电焊机. 2022(12): 108-113 .
    5. 张磊,柳长青,于静伟,胡希海,龚凤,金光日. 通过温度场数值模拟分析窄间隙埋弧焊过热区组织演化. 焊接学报. 2016(04): 103-106+134 . 本站查看

    Other cited types(2)

Catalog

    Article views (528) PDF downloads (45) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return