Citation: | WEI Shitong, SUN Jian, LIU Jingwu, LU Shanping. Effect of V content and tempering treatment on microstructure and mechanical properties of the high strength steel TIG weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(11): 1-6. DOI: 10.12073/j.hjxb.20200116001 |
文明月, 董文超, 庞辉勇, 等. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究[J]. 金属学报, 2018, 54(4): 501 − 511.
Wen Mingyue, Dong Wenchao, Pang Huiyong, et al. Microstructure and Impact toughness of welding heat-affected zones of a Fe-Cr-Ni-Mo high strength steel[J]. Acta Metallurgica Sinica, 2018, 54(4): 501 − 511.
|
王长军, 梁剑雄, 刘振宝, 等. 亚稳奥氏体对低温海工用钢力学性能的影响与机理[J]. 金属学报, 2016, 52(4): 385 − 393. doi: 10.11900/0412.1961.2015.00312
Wang Changjun, Liang Jianxiong, Liu Zhenbao, et al. Effect of metastable austenite on mechanical property and mechanism in cryogenic steel applied in oceaneering[J]. Acta Metallurgica Sinica, 2016, 52(4): 385 − 393. doi: 10.11900/0412.1961.2015.00312
|
Zhou Yanlei, Jia Tao, Zhang Xiangjun, et al. Microstructure and toughness of the CGHAZ of an offshore platform steel[J]. Journal of Materials Processing Technology, 2015, 219: 314 − 320. doi: 10.1016/j.jmatprotec.2014.12.017
|
张熹, 张楠, 刘宏, 等. 母材熔合作用对EQ51海工钢焊缝组织及韧性的影响[J]. 焊接学报, 2016, 37(12): 125 − 128.
Zhang Xi, Zhang Nan, Liu Hong, et al. Fusion effect on weld joint microstructure and toughness of EQ51 ocean engineering steel[J]. Transactions of the China Welding Institution, 2016, 37(12): 125 − 128.
|
Li Hongliang, Liu Duo, Tang Dongyan, et al. Microstructure and mechanical properties of E36 steel joint welded by underwater wet welding[J]. China Welding, 2016, 25(1): 30 − 35.
|
Haslberger P, Holly S, Ernst W, et al. Microstructure and mechanical properties of high-strength steel welding consumables with a minimum yield strength of 1100 MPa[J]. Journal of Materials Science, 2018, 53(9): 6968 − 6979. doi: 10.1007/s10853-018-2042-9
|
Holly S, Haslberger P, Zügner D, et al. Development of high-strength welding consumables using calculations and microstructural characterisation[J]. Welding in the World, 2018, 62(3): 451 − 458. doi: 10.1007/s40194-018-0562-1
|
Ju Yulin, Goodall Aimee, Strangwood Martin, et al. Characterisation of precipitation and carbide coarsening in low carbon low alloy Q & T steels during the early stages of tempering[J]. Materials Science and Engineering: A, 2018, 738: 174 − 189. doi: 10.1016/j.msea.2018.09.044
|
Williamson G K, Smallman R E. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum[J]. Philosophical Magazine, 1956, 1(1): 34 − 46. doi: 10.1080/14786435608238074
|
Yan Jiacheng, Xu Hongwei, Zuo Xiaowei, et al. Strategies for strengthening-ductility and hierarchical co-precipitation in multicomponent nano-precipitated steels by Cu partitioning[J]. Materials Science and Engineering: A, 2019, 739: 225 − 234. doi: 10.1016/j.msea.2018.10.036
|
Xu S S, Zhao Y, Chen D, et al. Nanoscale precipitation and its influence on strengthening mechanisms in an ultra-high strength low-carbon steel[J]. International Journal of Plasticity, 2019, 113: 99 − 110. doi: 10.1016/j.ijplas.2018.09.009
|
[1] | ZHANG Lei, LIU Changqing, YU Jingwei, HU Xihai, GONG Feng, JIN Guangri. Numerical analysis of microstructure evolution of coarse grained zone in sidewall during narrow gap submerged arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(4): 103-106. |
[2] | ZHANG Lei, QIN Guoliang, ZHANG Chunbo, ZHAO Yushan, ZHOU Jun. Numerical simulation of radial friction welding temperature field of steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 32-36. |
[3] | ZHANG Xiaoqi, XU Guocheng, WANG Chunsheng, WEN Jing. Numerical simulation of the temperature field during resistance spot welding with rectangular electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 101-104. |
[4] | HU Jun-feng, YANG Jian-guo, FANG Hong-yuan, LI Guang-min, CHEN Wei. Temperature field of arc gouging and its influence on microstructures[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (5): 93-96. |
[5] | HAN Guo-ming, LI Jian-qiang, YAN Qing-liang. Modeling and simulating of temperature field of laser welding for stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (3): 105-108. |
[6] | DU Han-bin, HU Lun-ji, WANG Dong-cuan, SUN Cheng-zhi. Simulation of the temperature field and flow field in full penetration laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 65-68,100. |
[7] | LEI YU-cheng, ZHANG Cheng, CHENG Xiao-nong, HU Xiao-jun, FENG Ya-ming. Calculated GMAW temperature field based on ANSYS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (4): 31-34. |
[8] | XU Wen-li, MENG Qing-gno, FANG Hong-yuan, XU Guang-yin. Temperature field of high strength aluminum ahoy sheets by twin wire welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (3): 11-14. |
[9] | XUE Zhong ming, GU Lan, ZHANG Yan hua. Numerical simulation on temperature field in laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (2): 79-82. |
[10] | Zou Zengda, Wang Xinhong, Qu Shiyao. Numerical Simulation of Temperature Field for Weld-repaired Zone of White Cast Iron[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (1): 24-29. |
1. |
高震贤. 窄间隙埋弧焊热—力耦合有限元建模及残余应力分析. 锻压装备与制造技术. 2023(05): 123-126 .
![]() | |
2. |
王云,梁民航,赵朋成,王璐璐. 厚板埋弧焊接头焊后感应热处理应力场的数值分析. 机械制造与自动化. 2022(02): 49-51+56 .
![]() | |
3. |
张磊,王博健,付傲,郑永杰,刘满雨,孟显伟,宋扬. 跟踪系统在窄间隙埋弧焊中的应用现状. 电焊机. 2022(07): 52-61 .
![]() | |
4. |
张磊,王博健,刘满雨,白德滨,付傲,张晴. 窄间隙埋弧焊机信息化管理系统. 电焊机. 2022(12): 108-113 .
![]() | |
5. |
张磊,柳长青,于静伟,胡希海,龚凤,金光日. 通过温度场数值模拟分析窄间隙埋弧焊过热区组织演化. 焊接学报. 2016(04): 103-106+134 .
![]() |