Advanced Search
LIANG Hui, LI Pan, SHEN Xin, CHEN Lifan, DAI Junhui, LI Dong, YANG Dongqing. Finite element analysis of the effect of ultrasonic impact on the stress of aluminum alloy arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 79-85, 119. DOI: 10.12073/j.hjxb.20230304003
Citation: LIANG Hui, LI Pan, SHEN Xin, CHEN Lifan, DAI Junhui, LI Dong, YANG Dongqing. Finite element analysis of the effect of ultrasonic impact on the stress of aluminum alloy arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 79-85, 119. DOI: 10.12073/j.hjxb.20230304003

Finite element analysis of the effect of ultrasonic impact on the stress of aluminum alloy arc additive manufacturing

More Information
  • Received Date: March 03, 2023
  • Available Online: August 29, 2023
  • The finite element analysis was used to numerically simulate the process of arc additive manufacturing of 2219 aluminum alloy under ultrasonic impact, and the changes in stress fields and component deformation were studied. The results show that the additional ultrasonic impact can reduce the stress concentration at the edge of the sediment and at the area close to the sediment in the substrate during the multi-layer multi-channel deposition. Additional ultrasonic impact during multi-layer multi-channel deposition can effectively reduce the stress inside the sediment. After the ultrasonic impact, the stress range at the interface between layers decreased from 156.1 − 211.6 MPa to 138.8 − 181.9 MPa, and the average residual stress on the surface decreased by 22.3%. Under the ultrasonic impact, the maximum deformation of multi-layer multi-pass arc additive component decreased from 0.61 mm to 0.53 mm, and the average deformation decreased from 0.33 mm to 0.27 mm. The stress distribution on the upper surface of the multi-layer sediment calculated by the finite element is similar to that of the measured in actual experiment, which proves that the simulation results are reliable.
  • Davoud J, Vaneker T, Gibson I. Wire and arc additive manufacturing: Opportunities and challenges to control the quality and accuracy of manufactured parts[J]. Materials & Design, 2021, 202: 109471.
    Evans S, Wang J, Qin J, et al. A review of WAAM for steel construction – Manufacturing, material and geometric properties, design, and future directions[J]. Structures, 2022, 44: 1506 − 1522. doi: 10.1016/j.istruc.2022.08.084
    Ou W, Mukherjeee T, Knapp G, et al. Fusion zone geometries, cooling rates and solidification parameters during wire arc additive manufacturing[J]. International Journal of Heat and Mass Transfer, 2018, 127: 1084 − 1094. doi: 10.1016/j.ijheatmasstransfer.2018.08.111
    张纪奎, 陈百汇, 张向. 电弧增材制造钛合金界面处残余应力及其影响[J]. 稀有金属材料与工程, 2018, 47(3): 920 − 926.

    Zhang Jikui, Chen Baihui, Zhang Xiang. Residual stress and its influence at the interface of titanium alloy fabricated by electric arc additive manufacturing[J]. Rare Metal Materials and Engineering, 2018, 47(3): 920 − 926.
    权国政, 杨焜, 盛雪, 等. 电弧熔丝增材制造残余应力控制方法综述[J]. 塑性工程学报, 2021, 28(11): 1 − 10. doi: 10.3969/j.issn.1007-2012.2021.11.001

    Quan Guozheng, Yang Kun, Sheng Xue, et al. Review of residual stress control methods for additive manufacturing of arc fuses[J]. Chinese Journal of Plastic Engineering, 2021, 28(11): 1 − 10. doi: 10.3969/j.issn.1007-2012.2021.11.001
    姚波, 马良, 陈静, 等. 电弧增材制造典型构件热应力变形仿真分析[J]. 机械科学与技术, 2022, 41(6): 961 − 970. doi: 10.13433/j.cnki.1003-8728.20200514

    Yao Bo, Ma Liang, Chen Jing, et al. Simulation analysis of thermal stress deformation of typical components of arc additive manufacturing[J]. Mechanical Science and Technology, 2022, 41(6): 961 − 970. doi: 10.13433/j.cnki.1003-8728.20200514
    Ding J, Colegrove P, Mehnen J, et al. A computationally efficient finite element model of wire and arc additive manufacture[J]. The International Journal of Advanced Manufacturing Technology, 2014, 70(1-4): 227 − 236. doi: 10.1007/s00170-013-5261-x
    Yuan T, Kou S, Luo Z. Grain refining by ultrasonic stirring of the weld pool[J]. Acta Materialia, 2016, 106: 144 − 154. doi: 10.1016/j.actamat.2016.01.016
    Tian Y, Shen J, Mehnen J, et al. Effects of ultrasonic vibration in the CMT process on welded joints of Al alloy[J]. Journal of Materials Processing Technology, 2018, 259: 282 − 291. doi: 10.1016/j.jmatprotec.2018.05.004
    Chen Q, Lin S, Yang C, et al. Grain fragmentation in ultrasonic-assisted TIG weld of pure aluminum[J]. Ultrasonics Sonochemistry, 2017, 39: 403 − 413. doi: 10.1016/j.ultsonch.2017.05.001
    贺地求, 李剑, 李东辉等. 铝合金超声搅拌复合焊接[J]. 焊接学报, 2011, 32(12): 70 − 72,108.

    He Diqiu, Li Jian, Li Donghui, et al. Aluminum alloy ultrasonic stirred composite welding[J]. Transactions of the China Welding Institution, 2011, 32(12): 70 − 72,108.
    Wang J, Yu C, Lu C, et al. Research status and future perspectives on ultrasonic arc welding technique[J]. Journal of Manufacturing Processes, 2020, 58: 936 − 954. doi: 10.1016/j.jmapro.2020.09.005
    饶德林, 陈立功, 倪纯珍等. 超声冲击对焊接结构残余应力的影响[J]. 焊接学报, 2005, 26(4): 48 − 50,64. doi: 10.3321/j.issn:0253-360X.2005.04.013

    Rao Delin, Chen Ligong, Ni Chunzhen, et al. Influence of ultrasonic impact on residual stress of welded structure[J]. Transactions of the China Welding Institution, 2005, 26(4): 48 − 50,64. doi: 10.3321/j.issn:0253-360X.2005.04.013
    Zhou C, Jiang F, Xu D, et al. A calculation model to predict the impact stress field and depth of plastic deformation zone of additive manufactured parts in the process of ultrasonic impact treatment[J]. Journal of Materials Processing Technology, 2020, 280: 116599. doi: 10.1016/j.jmatprotec.2020.116599
    Zhou C, Wang J, Guo C, et al. Numerical study of the ultrasonic impact on additive manufactured parts[J]. International Journal of Mechanical Sciences, 2021, 197(1): 106334.
    Yang Y, Jin X, Liu C, et al. Residual stress, mechanical properties, and grain morphology of Ti-6Al-4V alloy produced by ultrasonic impact treatment assisted wire and arc additive manufacturing[J]. Metals, 2018, 8(11): 934 − 934. doi: 10.3390/met8110934
  • Related Articles

    [1]XUE Dingqi, RUAN Pengxiang, CHENG Shiwen, ZHANG Zhongzhong, GENG Haibin, HAN Shaohua. Analysis on manufacturing process for thin-walled circular structure based on wire and arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(4): 42-48. DOI: 10.12073/j.hjxb.20200829003
    [2]WANG Hongfeng, WANG Jianli, ZUO Dunwen, SONG Weiwei, DUAN Xinglin. Finite element analysis on friction stir welding of aviation aluminum alloy plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(5): 21-25.
    [3]ZHU Hai, GUO Yanling, ZHANG Shanshan. Finite element analysis of thermal-mechanical coupled model for friction welded joint of 35Cr2Ni4MoA high-strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (4): 81-84.
    [4]HONG Bo, LI Lin, HONG Yuxiang, YANG Jiawang. Finite element analysis of magnetic control arc welding seam tracking sensors[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (7): 5-8.
    [5]HU Qingxian, WANG Yanhui, YAO Qingjun, WANG Shunyao. Finite element analysis of temperature field during keyholeplasma arc welding using SYSWELD software[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (12): 66-69.
    [6]YE Huan, XUE Songbai, ZHANG Liang, WANG Hui. Finite element analysis on reliability of lead-free soldered joints for CSP device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (11): 93-96.
    [7]YANG Iinjuan, SHEN Shiming. Finite element analysis of residual stress of welding repair for gas pipeline[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 77-80.
    [8]ZHANG Mingxian, WU Chuansong, LI Kehai, ZHANG Yuming. FEA based prediction of weld dimension in new DE-GMAW process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (2): 33-37.
    [9]WANG Huai-gang, WU Chuan-song, ZHANG Ming-xian. Finite element method analysis of temperature field in keyhole plasma arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (7): 49-53.
    [10]WU Yan-qing, PEI Yi, YANG Yong-xing, ZHANG Jian-xun. Finite Element Analysis of Transformation Super-plastic Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (4): 65-68.
  • Cited by

    Periodical cited type(1)

    1. 乔小丽,曹帅,武靖伟,张建晓,黄健康,樊丁. Inconel 600镍基合金PAW+TIG接头微观组织及力学性能. 焊接学报. 2024(06): 105-112 . 本站查看

    Other cited types(0)

Catalog

    Article views (159) PDF downloads (56) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return