Advanced Search
DAI Xinxin, GAO Xiangdong, ZHENG Qiaoqiao, JI Yukun. A method of fuzzy clustering identification for weld defects by magneto-optical imaging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 54-57. DOI: 10.12073/j.hjxb.20200525001
Citation: DAI Xinxin, GAO Xiangdong, ZHENG Qiaoqiao, JI Yukun. A method of fuzzy clustering identification for weld defects by magneto-optical imaging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 54-57. DOI: 10.12073/j.hjxb.20200525001

A method of fuzzy clustering identification for weld defects by magneto-optical imaging

More Information
  • Received Date: May 24, 2020
  • Available Online: March 23, 2021
  • Weldment of high strength steel (HSS) in laser welding was used as the research object, and a magneto-optical imaging detection method based on Faraday magnetic rotation effect was studied. By applying alternating-current power and changing the size of induced magnetic field of welds, a magneto-optical sensor was used to capture the magneto-optical images. The gray-level occurrence matrix (GLCM) texture features of the specific area of magneto-optical images were extracted and analyzed. For accurately detecting weld defects and classifying the type of defects, a fuzzy clustering identification model was established. Different calculation results of weld defects by adjusting the fuzzy index, the input characteristic numbers and the sample of weld defects of fuzzy c-mean clustering (FCM) were compared and the identification effect of weld defects were analyzed. Experimental results show that the fuzzy C-means clustering is effective for identification of the weld defects, which also has a better identification effect on cracks, incomplete penetrations, sags and different forms of same kinds of weld defects.
  • Nacereddine N, Ziou D, Hamami L. Fusion-based shape descriptor for weld defect radiographic image retrieval[J]. International Journal of Advanced Manufacturing Technology, 2013, 68(9–12): 2815 − 2832. doi: 10.1007/s00170-013-4857-5
    马雯波, 蔡青, 邓莉盈. 爆炸复合板压力容器径向裂纹的无损检测及其安全性分析[J]. 焊接学报, 2018, 39(10): 54 − 60.

    Ma Wenbo, Cai Qing, Deng Liying. Nondestructive testing and safety analysis of radial cracks in pressure vessels with explosive composite plates[J]. Transactions of the China Welding Institution, 2018, 39(10): 54 − 60.
    Chi D Z, Gang T. Defect detection method based on 2D entropy image segmentation[J]. China Welding, 2020, 29(1): 45 − 49.
    Zhang W P, Wang C L, Xie F Q, et al. Defect imaging curved surface based on flexible eddy current array sensor[J]. Measurement, 2020, 151: 107280 − 1-10.
    Zhou T Y, Zang Y C, Zhu J H, et al. NIG-AP: a new method for automated penetration testing[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(9): 1277 − 1288.
    Zhang L, Zhang Y J, Dai B C, et al. Welding defect detection based on local image enhancement[J]. IET Image Processing, 2019, 13(13): 2647 − 2658.
    高向东, 谢溢龙, 陈子琴, 等. 高强钢焊接缺陷磁光成像分形特征检测[J]. 焊接学报, 2017, 38(7): 1 − 4.

    Gao Xiangdong, Xie Yilong, Chen Ziqin, et al. Fractal feature detection of high strength steel weld defects by magneto-optical imaging[J]. Transactions of the China Welding Institution, 2017, 38(7): 1 − 4.
    Gao X D, Li Y F, Zhou X H, et al. Multidirectional magneto-optical imaging system for weld defects inspection[J]. Optics and Lasers in Engineering, 2020, 124: 105812-1-14.
    高向东, 李竹曼, 游德勇, 等. 激光焊接状态图像灰度共生矩阵分析法[J]. 焊接学报, 2017, 36(6): 11 − 14.

    Gao Xiangdong, Li Zhuman, You Deyong, et al. Gray level co-occurrence matrix analysis of laser welding state images[J]. Transactions of the China Welding Institution, 2017, 36(6): 11 − 14.
    Ji Z, Liu J, Cao G, et al. Robust spatially constrained fuzzy c-means algorithm for brain MR image segmentation[J]. Pattern Recognition, 2014, 47(7): 2454 − 2466.
  • Related Articles

    [1]GE Yaqiong, SONG Yue, CHANG Zexin, HOU Qingling, XU Haijun, QIAO Jianfu, HOU Min. Forming Quality and Microstructure of Al0.5CoCrFeNi Bulk High-Entropy Alloy Fabricated by Selective Laser Melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 89-95. DOI: 10.12073/j.hjxb.20231128003
    [2]WANG Yongdong, GONG Shulin, CHANG Mengyang, WANG Jinyu, REN yuanda, JING zonghao. Effect of Nb components on the microstructure and mechanical properties of high-entropy alloy coatings[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 107-113. DOI: 10.12073/j.hjxb.20230329001
    [3]WANG Yongdong, GONG Shulin, TANG Mingri, SONG Min. Effect of laser cladding process on the microstructure and properties of high entropy alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 116-122. DOI: 10.12073/j.hjxb.20220928001
    [4]Min ZHENG, Jin YANG, Yixuan ZHAO, Wenhu XU, Caiwang TAN, Hua ZHANG. Mechanism of improved wetting and spreading properties of Al-Si alloy/steel system by porous high entropy alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 25-33, 79. DOI: 10.12073/j.hjxb.20220502002
    [5]WANG Leilei, LIU Ting, DUAN Shuyao, ZHAN Xiaohong. Effect of element distribution on the microstructure of FeCoCrNi high entropy alloy coating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 57-64. DOI: 10.12073/j.hjxb.20210707004
    [6]TIAN Qichao, MA Honghao, SHEN Zhaowu, CHEN Zijun, ZHAO Kai, Zhao Yang. Explosive welding and performance test of Al0.1CoCrFeNi high-entropy alloy/TA2 composite plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(6): 22-29. DOI: 10.12073/j.hjxb.20200506002
    [7]SU Yunhai, LIANG Xuewei, DENG Yue, LIU Yunqi. Microstructure and property analysis of FeAlCuCrNiNbx high-entropy alloy surfacing layer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 38-43, 50. DOI: 10.12073/j.hjxb.20191015001
    [8]SU Yunhai, DENG Yue, DOU Lijie, LIANG Xuewei. Effect of Mo content on microstructure and properties of FeAlCuCrNiMox alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 111-115,160. DOI: 10.12073/j.hjxb.2019400245
    [9]DONG Shizhi, MENG Xu, MA Zhuang, ZHAO Yuechao. Effects of WC and Al2O3 on the microstructure and erosion wear resistance of FeAlCoCrCuTi0.4 high-entropy alloy coating by argon arc cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 127-132. DOI: 10.12073/j.hjxb.2019400194
    [10]WANG Jianxin, YIN Ming, LAI Zhongmin, LI Xue. Wettability and microstructure of Sn-Ag-Cu-In solder[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (11): 69-72.
  • Cited by

    Periodical cited type(9)

    1. 关皓真,张裕,孙磊,吴艳明. 脉冲熔化极气体保护焊弧长神经网络建模及参数预测. 材料开发与应用. 2024(03): 28-35 .
    2. 王超,陈信宇,吴春彪,李雷,王洁. 基于快速蜜蜂试验法的304不锈钢激光焊工艺优化. 焊接学报. 2023(02): 102-110+135 . 本站查看
    3. 杜晓辉,陈凡红,刘帅,朱敏杰,许佳豪. 压力传感器波纹膜片低应力激光焊接工艺. 光学精密工程. 2023(11): 1652-1659 .
    4. 杨华庆,张建护,唐德渝,王克宽. 机器人立体视觉系统标定误差预测补偿技术. 控制工程. 2022(04): 757-762 .
    5. 朱胜,张雨豪,郭迎春,王晓明,常青,赵阳. 高能微弧沉积H65黄铜涂层试验研究. 热加工工艺. 2021(14): 102-104+108 .
    6. 易润华,邓黎鹏,程东海,刘奋成. 基于多指标综合评分方差分析的镍铬合金储能缝焊工艺研究. 材料导报. 2021(14): 14161-14165 .
    7. 刘晓明,刘威,李龙女,朱高嘉,姜文涛. 基于改进神经网络和遗传算法的真空灭弧室优化设计. 真空科学与技术学报. 2020(04): 359-364 .
    8. 任书文,陈士忠,刘子金,夏忠贤,侯爱山,王永华. 钢筋骨架焊接工艺参数的优化研究. 建筑机械化. 2020(11): 98-101 .
    9. 尹燕,赵超,潘存良,路超,张瑞华. 气体流量对射频等离子体球化GH4169合金粉末的影响. 焊接学报. 2019(11): 100-105+165 . 本站查看

    Other cited types(9)

Catalog

    Article views (522) PDF downloads (31) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return