Citation: | LI Zhigang, ZHU Lin, HUANG Wei, XU Xiang, YE Jianxiong. Study on dynamic evolution and acoustic pulse of bubbles in underwater welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(4): 36-41. DOI: 10.12073/j.hjxb.20200517001 |
韩凤起, 李志尊, 孙立明, 等. 水下湿法手工自蔓延焊接技术[J]. 焊接学报, 2019, 40(7): 149 − 155.
Han Fengqi, Li Zhizun, Sun Liming, et al. Research on underwater wet manual SHS welding[J]. Transactions of the China Welding Institution, 2019, 40(7): 149 − 155.
|
Li H L, Liu D, Tang D Y, et al. Microstructure and mechanical properties of E36 steel joint welded by underwater wet welding[J]. China Welding, 2016, 25(1): 30 − 35.
|
Chen H, Guo N, Feng J C, et al. Investigation of arc bubble affecting the arc stability and improvement of weld appearances using bubble constraint device in underwater wet welding[J]. Materials Science Forum, 2019, 4901: 215 − 221.
|
王建峰, 孙清洁, 张顺, 等. 基于电弧气泡调控的水下湿法焊接稳定性研究[J]. 机械工程学报, 2018, 54(14): 50 − 57.
Wang Jianfeng, Sun Qingjie, Zhang Shun, et al. Investigation on underwater wet welding process stability based on the arc bubble control[J]. Journal of Mechanical Engineering, 2018, 54(14): 50 − 57.
|
Yang Q Y, Han Y F, Jia C B, et al. Impeding effect of bubbles on metal transfer in underwater wet FCAW[J]. Journal of Manufacturing Processes, 2019, 45: 682 − 689. doi: 10.1016/j.jmapro.2019.08.013
|
Oliveira F R, Soares W R, Bracarense A Q. Study correlating the bubble phenomenon and electrical signals in underwater wet welding with covered electrodes[J]. Welding International, 2015, 29(5): 363 − 371. doi: 10.1080/09507116.2014.932980
|
Zhao B, Chen J, Jia C B, et al. Numerical analysis of molten pool behavior during underwater wet FCAW process[J]. Journal of Manufacturing Processes, 2018, 32: 538 − 552.
|
Kobernik N V, Mikheev R S, Linnik A A, et al. Effect of the conditions of machine hidden arc welding with an additional hot additive (flux-cored electrode) on the formation of a joint weld[J]. Russian Metallurgy (Metally), 2018(13): 1249 − 1254.
|
Wang L L, Xie F X, Feng Y L, et al. Innovative methodology and database for underwater robot repair welding: A technical note[J]. ISIJ International, 2017, 57(1): 203 − 205. doi: 10.2355/isijinternational.ISIJINT-2016-407
|
Muktepavel V, Murzin V, Karpov V, et al. Research on welding and processing behavior of electrodes and features of their application in “wet” underwater arc welding[J]. Materials Science Forum, 2019, 4726: 913 − 920.
|
Guo N, Du Y P, Feng J C, et al. Study of underwater wet welding stability using an X-ray transmission method[J]. Journal of Materials Processing Technology, 2015, 225: 133 − 138. doi: 10.1016/j.jmatprotec.2015.06.003
|
[1] | YANG Yicheng, DU Bing, HUANG Jihua, CHEN Jian, XU Fujia, HUANG Ruisheng. Influence of tungsten electrode geometric characteristics on the thermodynamics behavior of arc and molten pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 104-108. DOI: 10.12073/j.hjxb.20220918003 |
[2] | LI Dequan, FAN Ding, HUANG Jiankang, YAO Xinglong. Effect of copper vapor on arc characteristics under DC magnetic field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 71-76. DOI: 10.12073/j.hjxb.20220701002 |
[3] | ZHANG Tianyi, ZHANG Zhaodong, WANG Zeli, XU Guomin, LIU Liming. Forming characteristics of bypass coupling triple-wire gas indirect arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 25-30. DOI: 10.12073/j.hjxb.20220311002 |
[4] | LEI Zheng, ZHU Zongtao, LI Yuanxing, CHEN Hui. Numerical simulation of TIG arc characteristics of hollow tungsten electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 9-14, 27. DOI: 10.12073/j.hjxb.20210131003 |
[5] | YU Shibao, ZHAO Zhongqiu, GAO Zhonglin, ZHAI Baoling, SHI Tao, LIU Liming. Effect of pulse frequency on the stability of triple-wire indirect arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 92-96. DOI: 10.12073/j.hjxb.20200922001 |
[6] | Wenji Liu, Zhenyu Guan, Liangyu Li, Jianfeng Yue. Development of a narrow gap welding experiment system for oscillating arc sensing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. |
[7] | LIU Zhengjun, LI Yuhang, SU Yunhai. Numerical simulation of arc characteristics under mixtures of argon and hydrogen in gas tungsten arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 67-71. DOI: 10.12073/j.hjxb.2019400183 |
[8] | JIANG Yuanning, CHEN Maoai, WU Chuansong. Synchronous acquisition and analysis of metal transfer images and electrical parameters in CO2 arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (2): 63-66. |
[9] | LIU Lijun, ZHOU Bintao, DAI Hongbin, BI Shujuan, LAN Hu, ZHANG Huajun. Dual-channel signal acquisition and characteristics analysis of arc sound in pipe MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (8): 41-44. |
[10] | QIU Ling, FAN Chenglei, LIN Sanbao, YANG Chunli. High-frequency pulse modulated variable polarity welding power and its arc pressure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (11): 81-84. |