Advanced Search
LI Dequan, FAN Ding, HUANG Jiankang, YAO Xinglong. Effect of copper vapor on arc characteristics under DC magnetic field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 71-76. DOI: 10.12073/j.hjxb.20220701002
Citation: LI Dequan, FAN Ding, HUANG Jiankang, YAO Xinglong. Effect of copper vapor on arc characteristics under DC magnetic field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 71-76. DOI: 10.12073/j.hjxb.20220701002

Effect of copper vapor on arc characteristics under DC magnetic field

More Information
  • Received Date: June 30, 2022
  • Available Online: April 02, 2023
  • In order to study the effect of metal vapor on the arc characteristics of gas metal arc welding (GMAW) under the action of DC longitudinal magnetic field, tungsten-copper composites were made into special tungsten electrode instead of molten electrode to produce copper vapor, which was tested and studied by high speed camera method, spectral temperature measurement method and keyhole detection method. The results show that when copper vapor enters the arc plasma, the arc appears delamination. With the increase of copper vapor content, the outer radius of arc core increases, and the size of the arc core area decreases. When the Cu content is 0%, after the DC magnetic field is applied, the arc shrinks in the cathode and expands in anode with an notable increase in the axial maximum temperature of the arc. The peak value of the arc pressure deviates from the axis, and when the magnetic field intensity B = 0.015 T , the arc pressure shows a bimodal distribution. The distribution of current density is similar to that of arc pressure. With the intervention of copper vapor, the arc in the arc core region shrinks in the cathode and expands in the anode region. While the copper vapor around the arc core shrinks obviously, and the rise of the maximum axial temperature of the arc decreases obviously. At the same time, the copper vapor expands the conductive area of the arc, weakens the circumferential electromagnetic force. The pressure at the arc center decreases, and the distribution of anode current density was flattened.
  • 闫飞, 周一凡, 唐本刊, 等. 基于磁控冶金的铝/钢异种金属焊接特性[J]. 焊接学报, 2022, 43(5): 98 − 103. doi: 10.12073/j.hjxb.20220101004

    Yan fei, Zhou Yifan, Tang Benkan, et al. Welding characteristics of Al/steel dissimilar metals based on magnetically controlled metallurgy[J]. Transactions of the China Welding Institution, 2022, 43(5): 98 − 103. doi: 10.12073/j.hjxb.20220101004
    孙雅杰, 常云龙. 磁控电弧焊接过程及新技术研究进展[J]. 材料导报, 2020, 34(21): 21155 − 21165. doi: 10.11896/cldb.19060200

    Sun Yajie, Chang Yunlong. Development of magnetically controlled arc welding process and new technology[J]. Materials Reports, 2020, 34(21): 21155 − 21165. doi: 10.11896/cldb.19060200
    Wu Hong, Chang Yunlong, Lu Lin, et al. Review on magnetically controlled arc welding process[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(9-12): 4263 − 4273. doi: 10.1007/s00170-017-0068-9
    Fan Ding, Yao Xinlong, Hou Yingjie, et al. The study of arc behavior with different content of copper vapor in GTAW[J]. China Welding, 2022, 31(2): 1 − 14.
    Tanaka K, Shigeta M, Tanaka M, et al. Investigation of transient metal vapour transport processes in helium arc welding by imaging spectroscopy[J]. Journal of Physics D:Applied Physics, 2020, 53(42): 1 − 8.
    Xiang J A, Chen F, Phb C, et al. Numerical study of the metal vapour transport in tungsten inert-gas welding in argon for stainless steel[J]. Applied Mathematical Modelling, 2020, 79: 713 − 728. doi: 10.1016/j.apm.2019.11.001
    肖磊, 樊丁, 黄健康, 等. 外加高频纵向磁场作用下的 TIG 焊电弧数值模拟[J]. 焊接学报, 2017, 38(2): 66 − 70.

    Xiao Lei, Fan Ding, Huang Jiankang, et al. Numerical simulation of TIG welding arc with extra high-frequency longitudinal magnetic field[J]. Transactions of the China Welding Institution, 2017, 38(2): 66 − 70.
    Schupp J, Fischer W, Mecke H. Welding arc control with power electronics[C]//8th International Conference on Power Electronics and Variable Speed Drives. London, 2000: 443−450.
    Murphy A B. The effects of metal vapour in arc welding[J]. Journal of Physics D: Applied Physics, 2010, 43(43): 434001.
    Tanaka M, Yamamoto K, Tashiro S, et al. Time-dependent calculations of molten pool formation and thermal plasma with metal vapour in gas tungsten arc welding[J]. Journal of Physics D: Applied Physics, 2010, 43(43): 434009.
    斯红, 华学明, 张旺, 等. 基于Boltzmann光谱法的焊接电弧温度场测量计算[J]. 光谱学与光谱分析, 2012, 32(9): 2311 − 2313. doi: 10.3964/j.issn.1000-0593(2012)09-2311-03

    Si Hong, Hua Xueming, Zhang Wang, et al. Welding Arc temperature field measurements based on Boltzmann Spectrometry[J]. Spectroscopy and Spectral Analysis, 2012, 32(9): 2311 − 2313. doi: 10.3964/j.issn.1000-0593(2012)09-2311-03
    黄勇, 瞿怀宇, 樊丁, 等. 耦合电弧AA-TIG焊电弧压力测量与分析[J]. 焊接学报, 2013, 34(3): 33 − 36.

    Huang Yong, Zhai Huaiyu, Fan Ding, et al. Arc pressure measurement and analysis of coupling arc AA-TIG[J]. Transactions of the China Welding Institution, 2013, 34(3): 33 − 36.
    Murphy A B. A comparison of treatments of diffusion in thermal plasmas[J]. Journal of Physics D: Applied Physics, 1996, 29(7): 1922 − 1932. doi: 10.1088/0022-3727/29/7/029
    Gleizes A, Gonzalez J J, Liani B, et al. Calculation of net emission coefficient of thermal plasmas in mixtures of gas with metallic vapour[J]. Journal of Physics D: Applied Physics, 1999, 26(11): 1921 − 1927.
    Xiao L, Fan D, Huang J. Tungsten cathode-arc plasma-weld pool interaction in the magnetically rotated or deflected gas tungsten arc welding configuration[J]. Journal of Manufacturing Processes, 2018, 32: 127 − 137.
  • Related Articles

    [1]NI Yunqiang, YANG Jiannan, FANG Xuewei, ZHANG Changchun, LI Chunxu, WANG Jian, LU Bingheng. The metal transfer behavior in CMT-based wire arc direct energy deposition of 2219 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 19-32. DOI: 10.12073/j.hjxb.20230308003
    [2]YANG Yicheng, DU Bing, HUANG Jihua, CHEN Jian, XU Fujia, HUANG Ruisheng. Influence of tungsten electrode geometric characteristics on the thermodynamics behavior of arc and molten pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 104-108. DOI: 10.12073/j.hjxb.20220918003
    [3]ZHANG Tianyi, ZHANG Zhaodong, WANG Zeli, XU Guomin, LIU Liming. Forming characteristics of bypass coupling triple-wire gas indirect arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 25-30. DOI: 10.12073/j.hjxb.20220311002
    [4]LEI Zheng, ZHU Zongtao, LI Yuanxing, CHEN Hui. Numerical simulation of TIG arc characteristics of hollow tungsten electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 9-14, 27. DOI: 10.12073/j.hjxb.20210131003
    [5]YU Shibao, ZHAO Zhongqiu, GAO Zhonglin, ZHAI Baoling, SHI Tao, LIU Liming. Effect of pulse frequency on the stability of triple-wire indirect arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 92-96. DOI: 10.12073/j.hjxb.20200922001
    [6]FANG Naiwen, HUANG Ruisheng, YAN Dejun, YANG Yicheng, MA Yiming, LENG Bing. Effect of welding heatinput on microstructure and properties of MAG welded joint for low nickel high nitrogen austenitic stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 70-75. DOI: 10.12073/j.hjxb.20200502001
    [7]LIU Zhengjun, LI Yuhang, SU Yunhai. Numerical simulation of arc characteristics under mixtures of argon and hydrogen in gas tungsten arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 67-71. DOI: 10.12073/j.hjxb.2019400183
    [8]QIU Ling, FAN Chenglei, LIN Sanbao, YANG Chunli. High-frequency pulse modulated variable polarity welding power and its arc pressure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (11): 81-84.
    [9]ZHENG Shaoxian, ZHU Liang, ZHANG Xulei, CHEN Jianhong. Constricting arc characteristic with flux strips[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (8): 57-61.
    [10]HU Sheng-sun, MENG Ying-qian, BAO Jia-ming, SUN Dong. Characteristics of different medium aqueous vapor plasmaarc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (2): 5-8,27.

Catalog

    Article views (298) PDF downloads (56) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return