Advanced Search
LIU Zhengjun, LI Yuhang, SU Yunhai. Numerical simulation of arc characteristics under mixtures of argon and hydrogen in gas tungsten arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 67-71. DOI: 10.12073/j.hjxb.2019400183
Citation: LIU Zhengjun, LI Yuhang, SU Yunhai. Numerical simulation of arc characteristics under mixtures of argon and hydrogen in gas tungsten arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 67-71. DOI: 10.12073/j.hjxb.2019400183

Numerical simulation of arc characteristics under mixtures of argon and hydrogen in gas tungsten arc welding

More Information
  • Received Date: January 01, 2018
  • An axisymmetric model based on the magnetohydrodynamic (MHD) is established to investigate the effect of hydrogen on heat transfer and fluid flow characteristics of argon plasma in GTAW. The profiles of temperature and voltage drop, distributions of arc pressure and current density are simulated by utilizing the fluid dynamic theory coupled with Maxwell equations. The quantitative analysis and comparison of anodic heat fluxes under pure argon and mixtures of argon and hydrogen are also obtained. The results show that the addition of 10% hydrogen to argon makes the arc slightly constricted and increases electromagnetic forces up to 2 times of the conventional arc. Meanwhile, it also increases the temperature, plasma flow velocity, arc voltage, current density. This leads to more energy transferred to the anode, which can partly improve the thermal efficiency. The present study may provide theoretical reference for the further applications of high efficiency GTAW process.
  • 殷树言.气体保护焊工艺基础及应用[M].北京:机械工业出版社, 2012.
    John N.先进焊接方法与技术[M].北京:机械工业出版社, 2010.
    Lu Shanping, Dong Wenchao, Li Dianzhong, et al. Numerical study and comparisons of gas tungsten arc properties between argon and nitrogen[J]. Computational Materials Science, 2009, 45(2):327-335.
    王新鑫,樊丁,黄健康,等. TIG焊电弧-熔池传热与流动数值模拟[J].机械工程学报, 2015, 51(10):69-78 Wang Xinxin, Fan Ding, Huang Jiankang, et al. Namerecal simulation of heat transfer and fluid flow for arc-weld poolin TIG welding[J]. Journal fo Mechanical Engineering, 2015, 51(10):69-78
    Boulos M I, Fauchais P, Pfender E. Thermal plasmas-fundamentals and applications[M]. New York:Springer, 1994.
    Savas A, Ceyhun V. Finite element analysis of GTAW arc under different shielding gases[J]. Computational Materials Science, 2011, 51(1):53-71.
    Tanaka M, Terasaki H, Ushio M, et al. A unified numerical modeling of stationary tungsten-inert-gas welding process[J]. Metallurgical and Materials Transactions A, 2001, 33(7):2043-2052.
    Dong W, Lu S, Li D, et al. GTAW liquid pool convections and the weld shape variations under helium gas shielding[J]. International Journal of Heat and Mass Transfer, 2011, 54(7-8):1420-1431.
    Lowke J J, Morrow R, Haidar J, et al. Prediction of gas tungsten arc welding properties in mixtures of argon and hydrogen[J]. Plasma Science IEEE Transactions on, 1997, 25(5):925-930.
  • Cited by

    Periodical cited type(8)

    1. 杨朝刚,杨凯,陈家兑,黄海松. 不同钨极锥角下微TIG点焊电弧行为分析. 焊接. 2024(01): 1-9 .
    2. 梁明明,刘晓文,侯昊,陈佳铭,牛连山,姜艳朋. 焊枪喷嘴结构对保护气体流场的影响. 油气储运. 2024(04): 449-456 .
    3. 杨宽,高辉,周灿丰. 基于Fluent的窄间隙TIG焊枪结构优化设计. 焊接. 2022(08): 39-43 .
    4. 王新鑫,迟露鑫,许惠斌,樊丁. 双TIG电弧中氧传质行为的数值分析. 机械工程学报. 2021(04): 53-62 .
    5. 赵金涛,岳建锋,谢昶,刘文吉,刘海华. Q235与304L异种钢角焊缝GTAW电弧能量分配规律研究. 材料科学与工艺. 2021(06): 27-34 .
    6. 郭朝博,崔露露,陶凯,王会敏. 基基于多多物理场场耦合的的TIG焊焊电弧数数值模模拟研究究. 河南工学院学报. 2020(01): 60-64 .
    7. 范成磊,陈超,林三宝,杨春利,狄忠举. TIG焊接参数对全息干涉条纹的影响. 焊接学报. 2020(02): 1-5+97 . 本站查看
    8. 黑增杰,万阳,叶正山. 混合气体保护脉冲TIG工艺在UHVDC阀冷管道预制的应用. 机械制造文摘(焊接分册). 2020(03): 36-40 .

    Other cited types(4)

Catalog

    Article views (447) PDF downloads (141) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return