Advanced Search
HAO Feifan, LI Mengwei, WANG Junqiang, JIN Li, GENG Hao. Application of selective anodic bonding technology in grating gyroscope[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(12): 61-66. DOI: 10.12073/j.hjxb.20200419001
Citation: HAO Feifan, LI Mengwei, WANG Junqiang, JIN Li, GENG Hao. Application of selective anodic bonding technology in grating gyroscope[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(12): 61-66. DOI: 10.12073/j.hjxb.20200419001

Application of selective anodic bonding technology in grating gyroscope

More Information
  • Received Date: April 18, 2020
  • Available Online: December 16, 2020
  • Anode bonding technology is widely used in wafer-level MEMS device manufacturing and packaging. For devices with cantilever beam structure, it is easy to attract during bonding. Selective anode bonding technology is used to prevent the gyro from attracting failure during bonding. The formula of electrostatic pull-in voltage between gyro beam and glass was educed, and the relationship model between pull-in voltage and silicon structure glass gap was established. First, the gyroscope structure was made by DRIE, then the grating was made by sputtering Al/Cr on the glass substrate, and finally the anodic bonding was performed. The results showed that the bonding interface has no defects, and the conductivity of Cr and its oxides made the silicon-glass anodic bonding without electrostatic attraction. The average bonding strength was 33.94 MPa, and the bonding quality was good.
  • 谷专元, 何春华, 何燕华, 等. MEMS硅玻璃阳极键合工艺评价方法[J]. 传感器与微系统, 2017(10): 54 − 56.

    Gu Zhuanyuan, He Chunhua, He Yanhua, et al. MEMS silicon glass anode bonding process evaluation method[J]. Sensors and Microsystems, 2017(10): 54 − 56.
    侯占强, 董培涛, 肖定邦, 等. 一种避免静电黏附失效的低应力阳极键合技术[J]. 纳米技术与精密工程, 2011(5): 74 − 78.

    Hou Zhanqiang, Dong Peitao, Xiao Dingbang, et al. A low-stress anodic bonding technology to avoid electrostatic adhesion failure[J]. Nanotechnology and Precision Engineering, 2011(5): 74 − 78.
    San H, Li Y, Song Z, et al. Self-packaging fabrication of silicon–glass-based piezoresistive pressure sensor[J]. IEEE Electron Device Letters, 2013, 34(6): 789 − 791.
    Wenyin L, Xuezhong W, Dingbang X, et al. Characterization of signal transfer performance of a through glass via (TGV) substrate with silicon vertical feedthroughs[J]. Microelectronic Engineering, 2016, 165: 52 − 56.
    Torunbalci M M, Alper S E, Akin T. A novel fabrication and wafer level hermetic sealing method for SOI-MEMS devices using SOI cap wafers[C]//IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2015), 2015: 409 − 412.
    阮勇, 贺学锋, 张大成, 等. 微米尺度下键合强度的评价方法和测试结构[J]. 微电子学与计算机, 2005(8): 112 − 115.

    Ruan Yong, He Xuefeng, Zhang Dacheng, et al. Evaluation method and test structure of bonding strength at the micrometer scale[J]. Microelectronics and Computers, 2005(8): 112 − 115.
    Qiang X, Wenyin L, Xiangming X, et al. A novel high-sensitivity butterfly gyroscope driven by horizontal driving force[C]// IEEE Sensors, Glasgow, 2017: 2064 − 2071.
    Reddy J, Pratap R. Si-gold-glass hybrid wafer bond for 3D-MEMS and wafer level packaging[J]. Journal of Micromechanics and Microengineering, 2017, 27(1): 015005.
    Gao Y, Huang L, Ding X, et al. Design and implementation of a dual-mass MEMS gyroscope with high shock resistance[J]. Sensors, 2018, 18(4): 1037(1−18).
    Xu L, Li H, Yang C, et al. Comparison of three automatic mode-matching methods for silicon micro-gyroscopes based on phase characteristic[J]. IEEE Sensors Journal, 2016, 16(3): 610 − 619.
    Tez S, Akin T. Fabrication of a sandwich type three axis capacitive MEMS accelerometer[C]//IEEE Sensors, Baltimore, 2013: 1−4.
    Xie J, Yang J, Zhou J. Vibrational energy loss analysis of a MEMS disk resonator gyroscope[C]//IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Auckland, 2018: 385 − 390.
    VeenstraH T T, Berenschot J W, Gardeniers J G E, et al. Use of selective anodic bonding to create micropump chambers with virtually no dead volume[J]. Journal of the Electrochemical Society, 2001, 148(2): 68 − 2.
    Wallis G, Pomerantz D I. Field assisted glass-metal sealing[J]. Journal of Applied Physics, 1969, 40(10): 3946 − 3949.
    陈大明, 胡利方, 时方荣, 等. 硅-玻璃-硅阳极键合机理及力学性能[J]. 焊接学报, 2019, 40(2): 123 − 127.

    Chen Daming, Hu Lifang, Shi Fangrong, et al. Silicon-glass-silicon anode bonding mechanism and mechanical properties[J]. Transactions of the China Welding Institution, 2019, 40(2): 123 − 127.
    祁雪, 黄庆安, 秦明, 等. 单片集成MEMS中的阳极键合工艺[J]. 电子器件, 2005(4): 51 − 54.

    Qi Xue, Huang Qingan, Qin Ming, et al. Anodic bonding process in monolithic integrated MEMS[J]. Electronic Devices, 2005(4): 51 − 54.
    王喆垚. 微系统设计与制造[M]. 北京: 清华大学出版社, 2015.

    Wang Zheyao. Microsystem design and manufacturing[M]. Beijing: Tsinghua University Press, 2015.
    Nga P P, Boellard e, Pasqualina M, et al. Spin, spray coating and electrodeposition of photoresist for MEMS structures[J]. Journal of Micro Electro Mechanical Systems, 2004, 13(6): 491 − 499.
    胡宇群, 董明佳. MEMS 阳极键合界面层的力学行为研究进展[J]. 南京航空航天大学学报, 2015, 47(4): 474 − 486.

    Hu Yuqun, Dong Mingjia. Research progress of mechanical behavior of MEMS anode bonding interface layer[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2015, 47(4): 474 − 486.
    Zheng X, Yan X, Song Z, et al. Direct Al-Al contact in silicon-Pyrex7740 anodic bonding for hermetic package and electrical interconnecting[C]//2011 6th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Kaohsiung, 2011: 764 − 767.
  • Related Articles

    [1]XUE Yongzhi, HU Lifang, WANG Hao, LI Rong, WANG Wenxian. Electric current characteristic and mechanical properties of Si-glass-Al anodic bonding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 71-76,86. DOI: 10.12073/j.hjxb.2019400157
    [2]CHEN Daming, HU Lifang, SHI Fangrong, MENG Qinsen. Mechanism and mechanical property of Si-glass-Si anodic bonding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 123-127. DOI: 10.12073/j.hjxb.2019400054
    [3]CHEN Daming, HU Lifang, XUE Yongzhi, CHEN Shaoping, WANG Wenxian. Interfacial investigation and mechanical properties of Al-glass-Al anodic bonding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(9): 71-75. DOI: 10.12073/j.hjxb.2018390227
    [4]YIN Xu, LIU Cuirong, DU Chao, WU Changxiong. Effect of inorganic fillers on properties of polymer solid electrolyte and metal aluminum bonding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(11): 37-40.
    [5]LIU Cuirong, MENG Qingsen, HU Lifang, HU Minying. Microstructure and bonding mechanism of anodic bonded interface between pyrex glass and kovar alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (2): 73-76.
    [6]WANG Fu-liang, LI Jun-hui, HAN Lei, ZHONG Jue. Effect of bonding time on thick aluminum wire wedge bonding strength[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (5): 47-51.
    [7]LONG Zhi-li, HAN lei, WU Yun-xin, ZHOU Hong-quan. Effect of different temperature on strength of thermosonic bonding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (8): 23-26,38.
    [8]ZOU Jia-sheng, XU Zhi-rong, ZHAO Qi-zhang, CHEN Zheng. Bonding strength of double partial transient liquid phase bonding with Si3N4/Ti/Cu/Ni/Cu/Ti/Si3N4[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (2): 41-44.
    [9]Liu Huijie, Feng Jicai, Qian Yiyu. Interface Structures and Bonding Strength of SiC/TiAl Joints in Diffusion Bonding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (3): 170-174.
    [10]Feng Jicai, Liu Huijie, Han Shengyang, Li Zhuoran, Zhang Jiuhai. Interface Structures and Bonding Strength of SiC/Nb/SiC Diffusion Bonded Joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1997, (2): 20-23.
  • Cited by

    Periodical cited type(1)

    1. 李劲风,李昊然,王正安. 铝锂合金组织-性能相关性及新型铝锂合金设计. 中国材料进展. 2022(10): 796-807 .

    Other cited types(3)

Catalog

    Article views (760) PDF downloads (37) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return