Citation: | HUANG Zhiquan, DUAN Jiaxu, YANG Wei, ZHANG Haiyan. Study of impact energy on abrasive wear resistance of Fe-C-Mo-V hardfacing alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(12): 80-85. DOI: 10.12073/j.hjxb.20200228001 |
蒋旻, 栗卓新, 王英杰, 等. 含钒耐磨堆焊合金的组织与性能[J]. 中国机械工程, 2008(13): 1621 − 1625. doi: 10.3321/j.issn:1004-132X.2008.13.025
Jiang Min, Li Zhuoxin, Wang Yingjie, et al. Microstructure and properties of hardfacing alloy containing vanadium[J]. China Mechanical Engineering, 2008(13): 1621 − 1625. doi: 10.3321/j.issn:1004-132X.2008.13.025
|
KenchiReddy K M, Jayadeva C T. The effect of microstructure on 3 body abrasive wear behavior of hardfacing alloys[J]. Bonfring International Journal of Industrial Engineering and Management Science, 2014, 4(1): 14 − 23. doi: 10.9756/BIJIEMS.4797
|
员霄, 王井, 朱青海, 等. H13钢的铁基和钴基熔覆层组织与耐磨性[J]. 焊接学报, 2018, 39(12): 105 − 109. doi: 10.12073/j.hjxb.2018390307
Yun Xiao, Wang Jing, Zhu Qinghai, et al. Microstructure and abrasion resistance of Fe-based and Co-based coatings of AISI H13[J]. Transactions of the China Welding Institution, 2018, 39(12): 105 − 109. doi: 10.12073/j.hjxb.2018390307
|
Hou T P, Li Y, Wu K M. Effect of high magnetic field on alloy carbide precipitation in an Fe–C–Mo alloy[J]. Journal of Alloys and Compounds, 2012, 527: 240 − 246. doi: 10.1016/j.jallcom.2012.02.153
|
韩明儒, 魏世忠, 韩华, 等. 新型高钒耐磨合金的组织性能与工程应用[J]. 热加工工艺, 2015, 44(24): 13 − 15.
Han Mingru, Wei Shizhong, Han Hua, et al. Microstructure and properties of new type high vanadium wear-resisting alloy and its engineering application[J]. Hot Working Technology, 2015, 44(24): 13 − 15.
|
Wieczerzak K, Bala P, Stepien M, et al. Formation of eutectic carbides in Fe–Cr–Mo–C alloy during non-equilibrium crystallization[J]. Materials and Design, 2016, 94: 61 − 68. doi: 10.1016/j.matdes.2016.01.028
|
Deng Xinke, Zhang Guojun, Wang Tao, et al. Investigations on microstructure and wear resistance of Fe-Mo alloy coating fabricated by plasma transferred arc cladding[J]. Surface & Coatings Technology, 2018, 350: 480 − 487.
|
吴凯. 冲击功对湿磨衬板用钢在腐蚀条件下冲击磨损性能与机理影响的研究[D]. 合肥: 合肥工业大学, 2006.
Wu Kai. Research on the effect of impact energy to the impact abrasion properties and mechanisms of the wet mill liner materials used in the corrosive condition[D]. Hefei: Hefei University of Technology, 2006.
|
王智慧, 贺定勇, 蒋建敏, 等. Fe-Cr-C耐磨堆焊合金磨粒磨损行为[J]. 焊接学报, 2010, 31(11): 73 − 76.
Wang Zhihui, He Dingyong, Jiang Jianmin, et al. Abrasive wear behavior of Fe-Cr-C hardfacing alloy[J]. Transactions of the China Welding Institution, 2010, 31(11): 73 − 76.
|
王猷. 冲击磨料磨损机理研究[D]. 昆明: 昆明理工大学, 2003.
Wang You. Mechanism researcch of abrasive wear under impacting condition[D]. Kunming: Kunming University of Science and Technology, 2003.
|
王智慧, 贺定勇, 俞长丽, 等. 钒对Fe-Cr-C耐磨堆焊层性能的影响[J]. 焊接学报, 2010, 31(9): 61 − 64.
Wang Zhihui, He Dingyong, Yu Changli, et al. Effect of vanadium on property of Fe-Cr-C hardfacing alloy[J]. Transactions of the China Welding Institution, 2010, 31(9): 61 − 64.
|
吴松波, 蔡振兵, 林禹, 等. 硬质沙粒对TC4钛合金冲击磨损的损伤行为的研究[J]. 摩擦学学报, 2018, 38(4): 383 − 390.
Wu Songbo, Cai Zhenbing, Lin Yu, et al. Effect of hard sand on the impact wear behavior of TC4 alloy[J]. Tribology, 2018, 38(4): 383 − 390.
|
魏炜, 黄智泉, 张海燕, 等. 钒对铁基碳化钨耐磨堆焊层组织和性能的影响[J]. 焊接学报, 2019, 40(6): 131 − 136. doi: 10.12073/j.hjxb.2019400167
Wei Wei, Huang Zhiquan, Zhang Haiyan, et al. Effect of vanadium on microstructure and performance of tungsten carbide hardfacing alloys[J]. Transactions of the China Welding Institution, 2019, 40(6): 131 − 136. doi: 10.12073/j.hjxb.2019400167
|
朱志明, 范开果, 刘晗, 等. 残余应力对钢轨焊接接头落锤试验性能的影响[J]. 焊接学报, 2017, 38(4): 55 − 58. doi: 10.12073/j.hjxb.20170413
Zhu Zhiming, Fan Kaiguo, Liu Han, et al. Influence of residual stress on drop-weight test performance of rail welded joint[J]. Transactions of the China Welding Institution, 2017, 38(4): 55 − 58. doi: 10.12073/j.hjxb.20170413
|
黄智泉, 张永生, 禹润缜, 等. 载荷对Fe–Cr–C–Nb堆焊合金松散磨粒磨损行为的影响[J]. 粉末冶金技术, 2019, 37(1): 23 − 29.
Huang Zhiquan, Zhang Yongsheng, Yu Runzhen, et al. Effects of load on loosing abrasive wear behavior of Fe–Cr–C–Nb hardfacing alloys[J]. Powder Metallurgy Technology, 2019, 37(1): 23 − 29.
|