Citation: | ZHANG Bojun, YU Huajin, JING Hongyang, XU Lianyong, ZHAO Lei. Study on creep properties of deposited weld metal in nuclear class 316H pipe[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 97-101. DOI: 10.12073/j.hjxb.2019400320 |
雷玉成, 张 鑫, 陈 玲, 等. 中国低活化马氏体钢TIG焊焊接接头的高温蠕变性能分析[J]. 焊接学报, 2016, 37(3):5-8
Lei Yucheng, Zhang Xin, Chen Ling, et al. Analysis on creep properties of TIG welding joints of China low activation martensitic steel[J]. Transactions of the China Welding Institution, 2016, 37(3):5-8 |
田志凌, M·Steen. X20CrMoV12·1钢焊接接头的蠕变行为[J]. 焊接学报, 1992, 13(2):79-84
Tian Zhiling, M·Steen. Creep behavior of X20CrMoV12·1 welded joint[J]. Transactions of the China Welding Institution, 1992, 13(2):79-84 |
Sakthivel T, Vasudevan M, Laha K, et al. Comparison of creep rupture behaviour of type 316L(N) austenitic stainless-steel joints welded by TIG and activated TIG welding processes[J]. Materials Science & Engineering A, 2011, 528(22-23):6971-6980.
|
Vijayanand V D, Laha K, Parameswaran P, et al. Microstructural evolution during creep of 316LN stainless steel multi-pass weld joints[J]. Materials Science and Engineering:A, 2014, 607:138-144.
|
Vlastimil V. Creep behaviour and microstructural evolution in AISI 316LN + Nb steels at 650℃[J]. Materials Science & Engineering A, 2011, 528(12):4232-4238.
|
Zhang Y, Jing H, Xu L, et al. Microstructure and texture study on an advanced heat-resistant alloy during creep[J]. Materials Characterization, 2017, 130:156-172.
|
Xiao B, Xu L, Zhao L, et al. Microstructure evolution and fracture mechanism of a novel 9Cr tempered martensite ferritic steel during short-term creep[J]. Materials Science and Engineering:A, 2017, 707:466-477.
|
Zhang Y, Jing H, Xu L, et al. High-temperature deformation and fracture mechanisms of an advanced heat resistant Fe-Cr-Ni alloy[J]. Materials Science and Engineering:A, 2017, 686:102-112.
|
杨 滨. CrMoV-9%Cr转子钢窄间隙埋弧焊焊接接头的蠕变行为研究[D]. 上海:华东理工大学, 2017.
|
Zhang Y, Jing H, Xu L, et al. Design and performance of weld filler metal to match an advanced heat-resistant Fe-Cr-Ni alloy[J]. Materials Science & Engineering A, 2018, 721:103-116.
|
[1] | KUANG Xiaocong, QI Bojin, YANG Jianping, LU Yingyan. Study on the behavior of high-frequency pulsed TIG arc and molten pool flow of Inconel-52M welding wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 1-9. DOI: 10.12073/j.hjxb.20230309005 |
[2] | ZHOU Xiangman, FU Zichuan, BAI Xingwang, TIAN Qihua, FANG Dong, FU Junjian, ZHANG Haiou. Numerical simulation of the effect of wire feeding speed on the molten pool flow and weld bead morphology of WAAM[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 109-116. DOI: 10.12073/j.hjxb.20220603001 |
[3] | HAN Tao, GU Shiwei, XU Liang, ZHANG Hongjie, OUYANG Kai. Study on stress and deformation of K-TIG welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(11): 125-132. DOI: 10.12073/j.hjxb.2019400299 |
[4] | HUANG Jiankang, PAN Wei, SUN Tianliang, YU Shurong, FAN Ding. Flow behavior of stainless steel/carbon steel TIG welding pool surface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 18-25. DOI: 10.12073/j.hjxb.2019400203 |
[5] | HUANG Jiankang, CHEN Huizi, YANG Maohong, ZHANG Yuming, YANG Fuqian. Numerical analysis of the behavior of swing TIG wire-filled weld pool based on tracer particles[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 7-13. DOI: 10.12073/j.hjxb.2019400146 |
[6] | LI Liqun, HAO Yu, PENG Jin. Effect of surface tension on flow in laser deep penetration welding molten pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 13-19. DOI: 10.12073/j.hjxb.2019400034 |
[7] | WANG Houqin, ZHANG Binggang, WANG Ting, FENG Jicai. Numerical simulation of molten pool flow behavior in stationary electron beam welding of 304 stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 57-61. |
[8] | HUANG Yong, ZHANG Zhiguo, WANG Yanlei. Nitrogen distribution in molten pool of gas pool coupled activating TIG welding with rapid cooling method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(2): 31-34. |
[9] | LI Dongjie, LU Shanping, LI Dianzhong, LI Yiyi. Tracer investigation of convection in weld pool under TIG welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (8): 45-48. |
[10] | Wu Chuansong, Chen Dinghua, Wu Lin. NUMERICAL SIMULATION OF THE FLUID FLOW AND HEAT TRANSFER IN TIG WELDING MOLTEN POOLS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1988, (4): 263-269. |
1. |
田佳铭,张荣,孔梅. 激光熔覆焊接参数对极细桥丝焊接质量的影响研究. 火工品. 2025(02): 68-74 .
![]() | |
2. |
董军强,陈克选,陈鹏. 基于不同等离子电流的等离子-MIG复合焊数值模拟. 焊接. 2023(05): 1-6 .
![]() | |
3. |
殷琪安,陶武,牟刚,樊雪,任闻杰,杨上陆. 重卡结构件激光-GMAW复合焊接变形数值模拟研究. 电焊机. 2023(07): 16-23 .
![]() | |
4. |
季齐宝,王文焱,张帅锋,吕逸帆,谢敬佩,王爱琴,柳培. TA2工业纯钛激光焊接的数值模拟分析. 激光与光电子学进展. 2022(17): 284-291 .
![]() | |
5. |
杨涛,汪远,庄园,杨瑞欣,曾俊谚,李桓玉. 激光电弧热源复合模式对301L不锈钢焊接接头性能的弱化机制. 焊接学报. 2022(09): 56-61+116 .
![]() | |
6. |
朱东芳,朱加雷,焦向东,苗春雨,周飞鸿,蔡志海,颜秉宇. 921A钢激光-MAG复合焊接头组织及性能. 焊接. 2022(09): 25-29+42 .
![]() | |
7. |
孙家豪,张超勇,吴剑钊,张帅坤,祝磊. 基于神经网络的316L不锈钢激光焊焊缝形貌预测. 焊接学报. 2021(12): 40-47+99 .
![]() | |
8. |
朱梓坤,韩阳,张舟,张义,周龙早. Numerical simulation of residual stress and deformation for submerged arc welding of Q690D high strength low alloy steel thick plate. China Welding. 2021(03): 49-58 .
![]() |