Citation: | HUANG Jiankang, CHEN Huizi, YANG Maohong, ZHANG Yuming, YANG Fuqian. Numerical analysis of the behavior of swing TIG wire-filled weld pool based on tracer particles[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 7-13. DOI: 10.12073/j.hjxb.2019400146 |
Liu H H, Chen H J, Liu W J, et al. Numerical analysis of flow-thermal coupling in micro-plasma welding pool of thin-wall part[J]. China Welding, 2018, 27(2):13-18.
|
Yudodibroto B Y B, Hermans M J M, Hirata Y, et al. Influence of filler wire addition on weld pool oscillation during gas tungsten arc welding[J]. Science&Technology of Welding&Joining, 2004, 9(2):163-168.
|
武传松,陈定华,吴林. TIG焊接熔池中的流体流动及传热过程的数值模拟[J].焊接学报, 1988, 9(4):62-68 Wu Chuansong, Chen Dinghua, Wu Lin. Numerical simulation of the fluid flow and heat transfer in TIG welding molten pools[J]. Transactions of the China Welding Institution, 1988, 9(4):62-68
|
陈树君,张所来,黄宁,等.电弧熔丝脉冲GTAW熔滴过渡行为分析[J].焊接学报, 2017, 38(1):17-21 Chen Shujun, Zhang Suolai, Huang Ning, et al. Droplet transfer of arcing-wire pulse GTAW[J]. Transactions of the China Welding Institution, 2017, 38(1):17-21
|
周啸尘,李桓,宋春光,等.脉冲TOPTIG焊熔滴过渡特性分析[J].焊接学报, 2017, 38(7):45-48 Zhou Xiaochen, Li Huan, Song Chunguang, et al. Study on characteristics of droplet transfer for pulsed TOPTIG[J]. Transactions of the China Welding Institution, 2017, 38(7):45-48
|
武传松,郑炜,吴林.脉冲电流作用下TIG焊接熔池行为的数值模拟[J].金属学报, 1998, 34(4):416-422 Wu Chuansong, Zheng Wei, Wu Lin. Numerical simulation of TIG weld pool behavior under the action of pulsed current[J]. Acta Metallurgica Sinica, 1998, 34(4):416-422
|
武传松.焊接热过程与熔池形态[M].北京:机械工业出版社, 2008.
|
高如超,饶政华,李芸霄,等.脉冲GTAW熔池行为和焊缝成形的三维数值模拟[J].中南大学学报(自然科学版), 2013(11):4712-4719 Gao Ruchao, Rao Zhenghua, Li Yunxiao, et al. Three-dimensional modeling of weld pool dynamics and weld bead formation during pulsed GTAW[J]. Journal of Central South University (Science and Technology), 2013(11):4712-4719
|
黄健康,郭朝博,石玗,等. TIG焊熔池在阶跃参数下的数值分析[J].焊接学报, 2012, 33(9):17-20 Huang Jiankang, Guo Chaobo, Shi Yu, et al. Numerical analysis of TIG welding pool at step parameter[J]. Transactions of the China Welding Institution, 2012, 33(9):17-20
|
Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1):201-225.
|
Mahajan S, Biradar N S, Raman R, et al. Effect of mechanical arc oscillation on the grain structure of mild steel weld metal[J]. Transactions of the Indian Institute of Metals, 2012, 65(2):171-177.
|
Rao S R K, Reddy G M, Kamaraj M, et al. Grain refinement through arc manipulation techniques in Al-Cu alloy GTA welds[J]. Materials Science&Engineering A, 2005, 404(1):227-234.
|
Sundaresan S, Ram G D J. Use of magnetic arc oscillation for grain refinement of gas tungsten arc welds in α-β titanium alloys[J]. Science and Technology of Welding and Joining, 1999, 4(3):151-160.
|
Sivaprasad K, Raman S G S, Mastanaiah P, et al. Influence of magnetic arc oscillation and current pulsing on microstructure and high temperature tensile strength of alloy 718 TIG weldments[J]. Materials Science and Engineering:A, 2006, 428(1-2):327-331.
|
Kou S, Le Y. Improving weld quality by low-frequency arc oscillation[J]. Welding Journal, 1985, 64(3):51-55.
|
[1] | YUAN Kuilin, DONG Kun, LI Linyue. Two-dimensional weight function of stress intensity factors for external circumferential surface cracks in cylinders[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20231208001 |
[2] | YU Xi, WEI Guoqian, LI Shanshan, YE Fan, CHEN Siwen. Numerical simulation analysis of crack propagation in weld toe considering multiple cracks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 88-93. DOI: 10.12073/j.hjxb.2019400187 |
[3] | XUE Bin, ZHANG Tianhui, XU Renping, WANG Shiyue. Effect of residual compressive stress field on fatigue crack growth of B780CF steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 103-108. |
[4] | LIU Duo, LANG Bo, SUN Daqian, YUAN Shidong. Mechanism of solidification cracking of resistance spot welded magnesium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(5): 109-112. |
[5] | ZHENG Lijuan, CHAI Xuan, HAN Xiaojuan, FU Yuming. Analysis on electromagnetic heat strengthening of welded joint with embedding crack and mechanical performance testing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (10): 5-8. |
[6] | XU Lianyong, JING Hongyang. Stress intensity factor of interfacial crack between metal-base ceramic coating and steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (3): 84-88. |
[7] | BO Chunyu, YANG Yuting, CHOU Shuguo, ZHOU Shifeng. Solidification cracking mechanism of 690 nickeil-based alloy surfacing metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (10): 69-72. |
[8] | ZHANG Zhong-ping, HUO Li-xing, WANG Dong-po, ZHANG Yu-feng. Effect of sprayed coatings on stress intensity factor of weld toe crack of cruciform welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (2): 85-88. |
[9] | WEI Yan-hong, LIU Ren-pei, DONG Zu-jue. Simulated Stress-strain Distributions for Weld Metal Solidification Cracking in Stainless Steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (2): 36-38. |
[10] | Zhang Jianxun, Shi Yaowu, Tu Mingjing. Factors affecting on estimation of fracture mechanics parameters of heterogeneous crack body[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (4): 221-227. |
1. |
林方强,芦丽莉,李诗易,薛谦,柏忠炼,徐少峰. 凸面异形结构ERNiCrFe-7A堆焊层裂纹控制. 焊接. 2023(07): 54-58+64 .
![]() | |
2. |
张赞赞,李勇军,林庆宇,高军,曾祥甫. 超临界机组高温再热器管裂纹分析. 设备监理. 2021(05): 52-57 .
![]() |