Advanced Search
HUANG Jiankang, CHEN Huizi, YANG Maohong, ZHANG Yuming, YANG Fuqian. Numerical analysis of the behavior of swing TIG wire-filled weld pool based on tracer particles[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 7-13. DOI: 10.12073/j.hjxb.2019400146
Citation: HUANG Jiankang, CHEN Huizi, YANG Maohong, ZHANG Yuming, YANG Fuqian. Numerical analysis of the behavior of swing TIG wire-filled weld pool based on tracer particles[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 7-13. DOI: 10.12073/j.hjxb.2019400146

Numerical analysis of the behavior of swing TIG wire-filled weld pool based on tracer particles

More Information
  • Received Date: December 23, 2018
  • In order to make the liquid metal distribution of TIG welding pool more uniform, the influence of welding torch swing on the behavior of weld pool is studied based on ordinary TIG wire-filled welding. The mathematical model of TIG wire-filled welding for welding torch swing is established, and the tracer particles are utilized. The method compares the temperature field, flow field and droplet mass distribution of ordinary TIG wire-filled and swing TIG wire-filled. The analysis shows that the ordinary TIG wire-filled weld pool profile is basically the same as the swing TIG wire-filled weld pool, but the swing TIG welding changes the flow field behavior in the weld pool by swing arc, which affects the distribution of temperature field and makes the temperature distribution in the weld pool more uniform. The tracer particles distribution shows that in TIG wire-filled welding, the swing TIG wire-filled welding can make the droplet metal more evenly distributed in the weld pool.
  • Liu H H, Chen H J, Liu W J, et al. Numerical analysis of flow-thermal coupling in micro-plasma welding pool of thin-wall part[J]. China Welding, 2018, 27(2):13-18.
    Yudodibroto B Y B, Hermans M J M, Hirata Y, et al. Influence of filler wire addition on weld pool oscillation during gas tungsten arc welding[J]. Science&Technology of Welding&Joining, 2004, 9(2):163-168.
    武传松,陈定华,吴林. TIG焊接熔池中的流体流动及传热过程的数值模拟[J].焊接学报, 1988, 9(4):62-68 Wu Chuansong, Chen Dinghua, Wu Lin. Numerical simulation of the fluid flow and heat transfer in TIG welding molten pools[J]. Transactions of the China Welding Institution, 1988, 9(4):62-68
    陈树君,张所来,黄宁,等.电弧熔丝脉冲GTAW熔滴过渡行为分析[J].焊接学报, 2017, 38(1):17-21 Chen Shujun, Zhang Suolai, Huang Ning, et al. Droplet transfer of arcing-wire pulse GTAW[J]. Transactions of the China Welding Institution, 2017, 38(1):17-21
    周啸尘,李桓,宋春光,等.脉冲TOPTIG焊熔滴过渡特性分析[J].焊接学报, 2017, 38(7):45-48 Zhou Xiaochen, Li Huan, Song Chunguang, et al. Study on characteristics of droplet transfer for pulsed TOPTIG[J]. Transactions of the China Welding Institution, 2017, 38(7):45-48
    武传松,郑炜,吴林.脉冲电流作用下TIG焊接熔池行为的数值模拟[J].金属学报, 1998, 34(4):416-422 Wu Chuansong, Zheng Wei, Wu Lin. Numerical simulation of TIG weld pool behavior under the action of pulsed current[J]. Acta Metallurgica Sinica, 1998, 34(4):416-422
    武传松.焊接热过程与熔池形态[M].北京:机械工业出版社, 2008.
    高如超,饶政华,李芸霄,等.脉冲GTAW熔池行为和焊缝成形的三维数值模拟[J].中南大学学报(自然科学版), 2013(11):4712-4719 Gao Ruchao, Rao Zhenghua, Li Yunxiao, et al. Three-dimensional modeling of weld pool dynamics and weld bead formation during pulsed GTAW[J]. Journal of Central South University (Science and Technology), 2013(11):4712-4719
    黄健康,郭朝博,石玗,等. TIG焊熔池在阶跃参数下的数值分析[J].焊接学报, 2012, 33(9):17-20 Huang Jiankang, Guo Chaobo, Shi Yu, et al. Numerical analysis of TIG welding pool at step parameter[J]. Transactions of the China Welding Institution, 2012, 33(9):17-20
    Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1):201-225.
    Mahajan S, Biradar N S, Raman R, et al. Effect of mechanical arc oscillation on the grain structure of mild steel weld metal[J]. Transactions of the Indian Institute of Metals, 2012, 65(2):171-177.
    Rao S R K, Reddy G M, Kamaraj M, et al. Grain refinement through arc manipulation techniques in Al-Cu alloy GTA welds[J]. Materials Science&Engineering A, 2005, 404(1):227-234.
    Sundaresan S, Ram G D J. Use of magnetic arc oscillation for grain refinement of gas tungsten arc welds in α-β titanium alloys[J]. Science and Technology of Welding and Joining, 1999, 4(3):151-160.
    Sivaprasad K, Raman S G S, Mastanaiah P, et al. Influence of magnetic arc oscillation and current pulsing on microstructure and high temperature tensile strength of alloy 718 TIG weldments[J]. Materials Science and Engineering:A, 2006, 428(1-2):327-331.
    Kou S, Le Y. Improving weld quality by low-frequency arc oscillation[J]. Welding Journal, 1985, 64(3):51-55.
  • Related Articles

    [1]YUAN Kuilin, DONG Kun, LI Linyue. Two-dimensional weight function of stress intensity factors for external circumferential surface cracks in cylinders[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20231208001
    [2]YU Xi, WEI Guoqian, LI Shanshan, YE Fan, CHEN Siwen. Numerical simulation analysis of crack propagation in weld toe considering multiple cracks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 88-93. DOI: 10.12073/j.hjxb.2019400187
    [3]XUE Bin, ZHANG Tianhui, XU Renping, WANG Shiyue. Effect of residual compressive stress field on fatigue crack growth of B780CF steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 103-108.
    [4]LIU Duo, LANG Bo, SUN Daqian, YUAN Shidong. Mechanism of solidification cracking of resistance spot welded magnesium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(5): 109-112.
    [5]ZHENG Lijuan, CHAI Xuan, HAN Xiaojuan, FU Yuming. Analysis on electromagnetic heat strengthening of welded joint with embedding crack and mechanical performance testing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (10): 5-8.
    [6]XU Lianyong, JING Hongyang. Stress intensity factor of interfacial crack between metal-base ceramic coating and steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (3): 84-88.
    [7]BO Chunyu, YANG Yuting, CHOU Shuguo, ZHOU Shifeng. Solidification cracking mechanism of 690 nickeil-based alloy surfacing metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (10): 69-72.
    [8]ZHANG Zhong-ping, HUO Li-xing, WANG Dong-po, ZHANG Yu-feng. Effect of sprayed coatings on stress intensity factor of weld toe crack of cruciform welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (2): 85-88.
    [9]WEI Yan-hong, LIU Ren-pei, DONG Zu-jue. Simulated Stress-strain Distributions for Weld Metal Solidification Cracking in Stainless Steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (2): 36-38.
    [10]Zhang Jianxun, Shi Yaowu, Tu Mingjing. Factors affecting on estimation of fracture mechanics parameters of heterogeneous crack body[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (4): 221-227.
  • Cited by

    Periodical cited type(2)

    1. 林方强,芦丽莉,李诗易,薛谦,柏忠炼,徐少峰. 凸面异形结构ERNiCrFe-7A堆焊层裂纹控制. 焊接. 2023(07): 54-58+64 .
    2. 张赞赞,李勇军,林庆宇,高军,曾祥甫. 超临界机组高温再热器管裂纹分析. 设备监理. 2021(05): 52-57 .

    Other cited types(0)

Catalog

    Article views (351) PDF downloads (75) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return