Advanced Search
HAN Tao, GU Shiwei, XU Liang, ZHANG Hongjie, OUYANG Kai. Study on stress and deformation of K-TIG welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(11): 125-132. DOI: 10.12073/j.hjxb.2019400299
Citation: HAN Tao, GU Shiwei, XU Liang, ZHANG Hongjie, OUYANG Kai. Study on stress and deformation of K-TIG welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(11): 125-132. DOI: 10.12073/j.hjxb.2019400299

Study on stress and deformation of K-TIG welded joint

More Information
  • Received Date: January 01, 2019
  • Keyhole gas tungsten arc welding (K-TIG) process of Q345 low alloy steel plates was simulated by SYSWELD software. The temperature field of K-TIG welding process was simulated with three different combined heat sources, and compared with actual weld profile obtained by experiment. It was found that the temperature field obtained by the combination of double ellipsoid heat source on the upper half and 3D Gaussian heat source on the lower half was similar to the actual situation. The effects of plate thickness, gap and welding speed on the deformation and stress of K-TIG welded joints were investigated by K-TIG welding numerical simulation. The results indicate that reducing the thickness of weld plates is beneficial to reducing Z-direction deformation and transverse residual stress, leaving appropriate gap is beneficial to reducing residual stress, increasing welding speed is beneficial to reducing deformation after welding, but is not beneficial to controlling residual stress after welding.
  • Lathabai S, Jarvis B L, Barton K J. Comparison of keyhole and conventional gas tungsten arc welds in commercially pure titanium[J]. Materials Science & Engineering A, 2001, 299(1-2):81-93.
    Jarvis B L, Ahmed N U. Development of keyhole mode gas tungsten arc welding process[J]. Science & Technology of Welding & Joining, 2000, 5(1):21-28.
    樊文飞, 罗震, 冯悦峤, 等. 低合金钢Q345的深熔TIG焊研究[J]. 上海交通大学学报, 2016(s1):102-105 Fan Wenfei, Luo Zhen, Feng Yue'an, et al. Study on deep penetration TIG welding of low alloy steel Q345[J]. Journal of Shanghai Jiaotong University, 2016(s1):102-105
    Feng Y, Luo Z, Liu Z, et al. Keyhole gas tungsten arc welding of AISI 316L stainless steel[J]. Materials & Design, 2015, 85:24-31.
    Cui S L, Liu Z M, Fang Y X, et al. Keyhole process in K-TIG welding on 4 mm thick 304 stainless steel[J]. Journal of Materials Processing Technology, 2017, 243:217-228.
    Fang Y X, Liu Z M, Cui S L, et al. Improving Q345 weld microstructure and mechanical properties with high frequency current arc in keyhole mode TIG welding[J]. Journal of Materials Processing Technology, 2017, 250:280-288.
    张瑞华, 栗海霞, 李明, 等. K-TIG焊接电弧特性的数值分析[J]. 电焊机, 2012, 42(12):7-11 Zhang Ruihua, Li Haixia, Li Ming, et al. Numerical analysis of arc characteristics of K-TIG welding[J]. Electric Welding Machine, 2012, 42(12):7-11
    冯悦峤. 中厚钢板的深熔TIG焊工艺研究及温度场数值模拟[D]. 天津:天津大学, 2016.
    黄逸飞, 罗震, 敖三三, 等. 基于非对称热源的异种钢深熔TIG焊接数值模拟[J]. 机械工程学报, 2018, 54(2):41-47 Huang Yifei, Luo Zhen, Ao Sansan, et al. Numerical simulation of deep penetration TIG welding of dissimilar steels based on asymmetric heat source[J]. Journal of Mechanical Engineering, 2018, 54(2):41-47
    赵欣, 张彦华. 焊接过程温度场数值模拟中热源模型的选择[C]//中国机械工程学会. 全国计算机在焊接中的应用学术与技术交流会, 2008:429-433.
    胡庆贤. 穿孔等离子弧焊接温度场的有限元分析[D]. 济南:山东大学, 2007.
  • Related Articles

    [1]CHEN Shujun, NI Qingmian, LIU Haibin, CHEN Pingping, YAN Chaoyang, XIE Ruishan. Numerical simulation of hybrid additive and subtractive manufacturing and evolution behavior of stress and deformation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(5): 1-9. DOI: 10.12073/j.hjxb.20240131002
    [2]Guobin ZHANG, Meng JIANG, Xi CHEN, Ao CHEN, Zhenglong LEI, Yanbin CHEN. A comparison study of characteristics of weld formation, residual stress and distortion of laser welding under atmospheric pressure and vacuum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 34-41. DOI: 10.12073/j.hjxb.20220503002
    [3]XU Hailaing, GUO Xingye, LEI Yongping, LIN Jian, XIAO Rongshi. Residual stress and deformation of ultra-thin 316 stainless steel plate using pulsed laser welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 50-54. DOI: 10.12073/j.hjxb.2019400208
    [4]HUANG Bensheng, CHEN Quan, YANG Jiang, LIU Ge, YI Hongyu. Numerical simulation of welding residual stress and distortion in Q345/316L dissimilar steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 138-144. DOI: 10.12073/j.hjxb.2019400057
    [5]CAI Jianpeng, SUN Jiamin, XIA Linyin, Deng Dean. Prediction on welding residual stress and deformation in Q345 steel butt-welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(11): 61-64,68.
    [6]WANG Yanfei, GENG Luyang, GONG Jianming, JIANG Wenchun. Finite element simulation on residual stress and deformation for welding joint of 20MnMoNb super-thick tube sheet of ethylene oxide reactor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (11): 63-66.
    [7]JIANG Wenchun, ZHANG Yucai, GUAN Xuewei. Thermal stress and deformation in bonded compliant seal design for planar SOFC[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (11): 55-58.
    [8]WANG Yanfei, GENG Luyang, GONG Jianming, JIANG Wenchun. Numerical analysis to study effect of turn number on residual stress and deformation of butt welded 20MnMoNb super-thick tube-sheet[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (10): 13-16,24.
    [9]YAN Dongyang, WU Aiping, JIAO Haojun, NING Liqing, ZHOU Liangang. Numerical simulation of residual stress and deformation on laser welding of "grooved-coat" structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (11): 13-16.
    [10]XU Ji-jin, CHEN Li-gong, NI Chun-zhen. Temperature distribution,deformation and residual stresses of thick plate butt multipass welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (5): 97-100.
  • Cited by

    Periodical cited type(21)

    1. 王晓波,俞臻,胡永辉,吴鹏,梅锦辉,蔡智会,许建平,马英鹤,郑文健,杨建国. 微弧氧化改性对Ti6Al4V合金电子束接头耐蚀性能的影响. 表面技术. 2025(02): 106-118 .
    2. 李晓强,宋晓娇,高健,夏灵,何明桓. 钛合金电子束焊接接头组织和性能分析. 电焊机. 2025(05): 89-93 .
    3. 贾金龙,龙健,张林杰. 30 mm厚TC4钛合金电子束焊接头的高周疲劳与裂纹扩展速率. 焊接. 2024(01): 27-32 .
    4. 冯建程,鞠翔宇,初建鹏. TC4钛合金海水管系焊接接头应力腐蚀研究. 船舶物资与市场. 2024(02): 25-28 .
    5. 方乃文,黄瑞生,武鹏博,马一鸣,孙徕博,曹浩,邹吉鹏. 钛合金激光填药芯焊丝接头组织性能. 焊接学报. 2023(03): 61-69+132 . 本站查看
    6. 方乃文,黄瑞生,武鹏博,尹立孟,龙伟民,徐锴,曹浩,邹吉鹏. 钛合金窄间隙激光填丝焊接工艺及接头组织性能分析. 材料导报. 2023(10): 190-197 .
    7. 马寅,韩晓辉,李刚卿,杨志斌,宋东哲,靳月强. TC4钛合金激光-MIG复合焊接头组织性能. 电焊机. 2023(08): 93-97+114 .
    8. 樊浩,崔珊,陈文静,倪昱,惠媛媛. 激光功率对TC4钛合金激光-TIG复合焊焊缝成形与组织的影响. 应用激光. 2023(08): 48-54 .
    9. 樊浩,惠媛媛,崔珊,倪昱,李杰. TC4钛合金激光-TIG复合焊焊缝成形与组织研究. 热加工工艺. 2023(19): 123-127 .
    10. 苗金芳,王爱琴,吕逸帆,余巍,谢敬佩,柳培,廖志谦. TC4钛合金电子束连接组织与性能演变. 特种铸造及有色合金. 2023(11): 1485-1492 .
    11. 柳皓晨,范林,张海兵,王莹莹,唐鋆磊,白雪寒,孙明先. 钛合金深海应力腐蚀研究进展. 中国腐蚀与防护学报. 2022(02): 175-185 .
    12. 冯靖,吕雪岩,周晓锋,武少杰,程方杰. 热连轧高强钛合金厚壁管道的TIG工艺及组织和性能. 焊接. 2022(01): 8-13 .
    13. 庄明祥,赵安安,王浩军,李善良,龙健,张林杰. TC4钛合金电子束焊接头低周疲劳性能与断裂行为. 焊接. 2022(02): 39-45+55 .
    14. 方乃文,黄瑞生,谢吉林,曹浩,秦建,王善林,武鹏博,邹吉鹏. 大厚度TC4钛合金超窄间隙激光填丝焊接头组织性能研究. 电焊机. 2022(06): 25-34 .
    15. 张宇鹏,丁来法,Valerii Bilous,Sergii Akhonin,Khaskin Vladyslav,曾才有,梁晓梅. 厚板TC4钛合金电子束焊接头组织演变及力学性能. 电焊机. 2022(06): 87-92 .
    16. 苏金花,徐锴,武鹏博,谢吉林,邹吉鹏,冷冰. 钛及钛合金熔焊系列国家标准概述. 电焊机. 2022(06): 62-69 .
    17. 方乃文,郭二军,徐锴,尹立孟,黄瑞生,马一鸣,武鹏博. 钛合金激光填丝焊缝晶粒生长及相变原位观察. 中国有色金属学报. 2022(06): 1665-1672 .
    18. 王旭祥,祁文军,左小刚. 搭接率对TC4多道熔覆NiCrCoAlY热循环特性的影响. 应用激光. 2022(12): 45-52 .
    19. 巴一,师文庆,韩善果,黄进钰,黄江,谢玉萍,何宽芳. 不同离焦量对真空激光焊接TA2工业钛板的影响. 应用激光. 2021(03): 481-488 .
    20. 庄明祥,刘永强,刘波,王维贤,龙健,张林杰. TC4钛合金承重框双道双侧不等熔深EBW接头组织与性能研究. 稀有金属材料与工程. 2021(08): 2933-2940 .
    21. 赵盛举,祁文军,黄艳华,覃鑫. TC4激光熔覆NiCrCoAlY热循环特性及组织性能. 焊接学报. 2020(09): 89-96+102 . 本站查看

    Other cited types(9)

Catalog

    Article views (451) PDF downloads (22) Cited by(30)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return