Advanced Search
HUANG Hanchuan, XU Lianyong, JIN Hongyang, LV Xiaoqing. Study on droplet transfer of CMT + P welding process in SAF2507 super duplex stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 127-136. DOI: 10.12073/j.hjxb.2019400274
Citation: HUANG Hanchuan, XU Lianyong, JIN Hongyang, LV Xiaoqing. Study on droplet transfer of CMT + P welding process in SAF2507 super duplex stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 127-136. DOI: 10.12073/j.hjxb.2019400274

Study on droplet transfer of CMT + P welding process in SAF2507 super duplex stainless steel

More Information
  • Received Date: April 08, 2018
  • Available Online: July 12, 2020
  • In this paper, the high-speed camera and welding electrical signal collection system were applied to observe the metal transfer of CMT + P welding process in SAF2507 Super Duplex Stainless Steel. The metal transfer behaviors, change of waveforms and heat input characteristics with different WFS of CMT and CMT + P were analyzed. The droplet transfer characteristics were revealed. The results show that there are many differences between the actual waveforms and the theoretical waveforms. The shape and size of the droplet, transfer form, the wave state of molten pool, the distance from the wire tip to the workpiece and the spatter can all affect the fluctuation of the voltage. The voltage waveform diagram can be used to guide the analysis of the metal transfer behaviors. The pulse period plays a major role in heat input, and the control of heat input can be realized by adjusting pulse peak current, pulse base current and the number of pulses.
  • 金晓军. 双相不锈钢管道焊接质量控制和安全评定的研究[D]. 天津: 天津大学, 2004.
    杜东方. SAF2507双相不锈钢GTAW焊接接头组织与性能研究[D]. 太原: 太原科技大学, 2013.
    张 栋, 陈茂爱, 武传松. 高速CMT焊送丝速度和焊接电流波形参数的优化[J]. 焊接学报, 2018, 39(1): 119 − 122.

    Zhang Dong, Chen Maoai, Wu Chuansong. Optimization of waveform parameters for high speed CMT welding of steel[J]. Transactions of the China Welding Intitution, 2018, 39(1): 119 − 122.
    曹 睿, 朱海霞, 王 清, 等. 镁/钢异种金属CMT对接熔钎焊连接机理[J]. 焊接学报, 2016, 37(5): 37 − 40.

    Cao Rui, Zhu Haixia, Wang Qing, et al. Joining mechanisms of Mg-steel butt welded joints by cold metal transfer method[J]. Transactions of the China Welding Institution, 2016, 37(5): 37 − 40.
    葛佳棋, 王克鸿, 周 琦, 等. 7A52铝合金-钢异种结构CMT熔钎焊接头组织及镀镍层的行为与影响[J]. 焊接学报, 2016, 37(4): 24 − 28.

    Ge Jiaqi, Wang Kehong, Zhou Qi, et al. Study on CMT welding-brazing joint microstructure of 7A52 Al alloy-steel stud and influence of Ni coating[J]. Transactions of the China Welding Institution, 2016, 37(4): 24 − 28.
    Ge Jiaqi, Wang Kehong,Zhang Deku, et al. Microstructure characteristics and mechanical properties of steel stud to Al alloy by CMT welding-brazing process[J]. China Welding, 2016, 25(01): 49 − 56.
    Wang P. Characterization the contribution and limitation of the characteristic processing parameters in cold metal transfer deposition of an Al alloy[J]. Journal of Materials Processing Technology, 2017, 245: 122 − 133. doi: 10.1016/j.jmatprotec.2017.02.019
    Pang J. Arc characteristics and metal transfer behavior of CMT+P welding process[J]. Journal of Materials Processing Technology, 2016, 238: 212 − 217. doi: 10.1016/j.jmatprotec.2016.07.033
    Azar A S. A heat source model for cold metal transfer (CMT) welding[J]. Journal of Thermal Analysis and Calorimetry, 2015, 122: 741 − 746. doi: 10.1007/s10973-015-4809-4
    Pickin C G. Characterisation of the cold metal transfer (CMT) process and its application for low dilution cladding[J]. Journal of Materials Processing Technology, 2011, 211: 496 − 502. doi: 10.1016/j.jmatprotec.2010.11.005
    Ola O T, Doern F E. A study of cold metal transfer clads in nickel-base INCONEL 718 superalloy[J]. Materials and Design, 2014, 57: 51 − 59. doi: 10.1016/j.matdes.2013.12.060
  • Related Articles

    [1]SHEN Lei, HUANG Jiankang, LIU Guangyin, YU Shurong, FAN Ding, SONG Min. Microstructure and properties of titanium alloy made by plasma arc and AC auxiliary arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 57-63. DOI: 10.12073/j.hjxb.20220918002
    [2]LI Junzhao, SUN Qingjie, YU Hang, ZHANG Pengcheng, LIU Yibo, ZENG Xianshan. Study on grain size and microstructure of TC4 titanium alloy TIG and laser welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 57-62, 70. DOI: 10.12073/j.hjxb.20211015001
    [3]WANG Leilei, LIU Ting, DUAN Shuyao, ZHAN Xiaohong. Effect of element distribution on the microstructure of FeCoCrNi high entropy alloy coating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 57-64. DOI: 10.12073/j.hjxb.20210707004
    [4]WANG Ting, WANG Yifan, WEI Lianfeng, LI Qixian, JIANG Siyuan. Microstructure and properties of low voltage electron beam wire deposition layer of TC4 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 54-59. DOI: 10.12073/j.hjxb.20200803002
    [5]QIN Hang, CAI Zhihai, ZHU Jialei, WANG Kai, LIU Jian. Microstructure and properties of TC4 titanium alloy by direct underwater laser beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 143-148. DOI: 10.12073/j.hjxb.2019400328
    [6]GAO Xiaogang1, DONG Junhui1, HAN Xu1, HOU Jijun1, XU Dewei2. Weld shape and microstructure of Ti6Al4V alloy fluoride A-TIG weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 31-34. DOI: 10.12073/j.hjxb.20161026006
    [7]LANG Bo, ZHANG Tiancang, TAO Jun, GUO Delun. Microstructure in linear friction welded dissimillar titanium alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (7): 105-108,112.
    [8]GU Baolan, DING Dawei, WANG Li, XU Xuedong. Effects of heat treatment on microstructure and properties of electron beam welded TC4 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (10): 85-88.
    [9]LIU Shi-fu, SHEN Yi-fu, WANG Shao-gang. Microstructure analyse of surface Ti-metallized graphite[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 89-92.
    [10]Meng Qinseng, Wan Bao. Influence of microstructural appearances of slag on detachability of electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1993, (3): 202-206.
  • Cited by

    Periodical cited type(7)

    1. 张普,曹四龙. Al_2O_3+TiO_2复合颗粒对激光熔覆Inconel 718基润滑涂层显微组织及高温磨损行为的影响研究. 材料保护. 2024(06): 8-19 .
    2. 魏来,李丹,董振. 原位自生(Ti, V)C堆焊层的耐磨性能. 沈阳工业大学学报. 2023(01): 43-47 .
    3. 刘海浪,卢儒学,陈健,徐珖韬,张倩. 镍基合金电子束熔覆表面改性及高温耐磨性研究. 金属热处理. 2021(04): 161-166 .
    4. 吴雁楠,黄诗铭,朱平,马振一,兰博,何翰伟,郝博文. 原位碳化钛颗粒增强镍基喷焊层的组织与性能. 热加工工艺. 2021(22): 96-98+102 .
    5. 马强,陈明宣,孟君晟,李成硕,史晓萍,彭欣. 纯铜表面氩弧熔覆TiB_2/Ni复合涂层组织及耐磨性能. 焊接学报. 2021(09): 90-96+102 . 本站查看
    6. 王永东,杨在林,张宇鹏,朱艳. Y_2O_3对原位自生TiC增强Ni基涂层组织和性能影响. 焊接学报. 2020(02): 53-57+100 . 本站查看
    7. 陈鹏涛,曹梅青,吕萧,仇楠楠. 氩弧熔敷原位合成ZrC-TiB_2增强铁基涂层的组织与性能. 上海金属. 2020(05): 15-20 .

    Other cited types(2)

Catalog

    Article views (614) PDF downloads (37) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return