Advanced Search
WANG Ting, WANG Yifan, WEI Lianfeng, LI Qixian, JIANG Siyuan. Microstructure and properties of low voltage electron beam wire deposition layer of TC4 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 54-59. DOI: 10.12073/j.hjxb.20200803002
Citation: WANG Ting, WANG Yifan, WEI Lianfeng, LI Qixian, JIANG Siyuan. Microstructure and properties of low voltage electron beam wire deposition layer of TC4 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 54-59. DOI: 10.12073/j.hjxb.20200803002

Microstructure and properties of low voltage electron beam wire deposition layer of TC4 titanium alloy

More Information
  • Received Date: August 02, 2020
  • Available Online: December 03, 2020
  • The low voltage electron beam wire deposition tests on TC4 titanium alloy were carried out to explore the feasibility of the method, and the influence of the number of deposited layers on the microstructure and properties was analyzed. The results show that the multi-layer wire deposition of TC4 titanium alloy can also be completed on the accelerated voltage of 10 kV. The average microhardness of the deposited parts after multi-layer deposition is about 260 HV, and only the microhardness of the banded texture at the bottom of the deposited parts is close to 288 HV of the annealed TC4 substrate. Banded texture produced in multi-layer deposition process, β phase grain transformed to α + α′ + β by the influence of thermal cycle, the banded texture which composited with basket-like α′ phase and lamellar α phase have high microhardness, the other feature of banded texture is that more basket-like phase gradually integrated into the lamellar structure as the increase of the distance with substrate. The tensile fracture of the deposited part is also ductile fracture with the maximum tensile strength of 862 MPa, which is slightly lower than the national standard. It because the columnar crystals will become huge in the deposited parts with multiple layers, and equiaxed crystals will also appear. The huge size of the grains will decrease the tensile properties of the deposited parts.
  • Liu X Y, Chu P K, Ding C X. Surface modification of titanium, titanium alloys, and related materials for biomedical applications[J]. Materials Science & Engineering. R, Reports, 2004, 47(3−4): 49 − 121.
    Zhang W G, Wang C G, Liu W M. Characterization and tribological investigation of sol-gel ceramic films on Ti-6Al-4V[J]. Wear, 2006, 260(4−5): 379 − 386. doi: 10.1016/j.wear.2005.05.006
    Dandekar C, Shin Y, Barnes J. Machinability improvement of titanium alloy (Ti-6Al-4V) via LAM and hybrid machining[J]. International Journal of Machine Tools and Manufacture, 2010, 50(2): 174 − 182. doi: 10.1016/j.ijmachtools.2009.10.013
    赵剑峰, 马智勇, 谢德巧, 等. 金属增材制造技术[J]. 南京航空航天大学学报, 2014, 46(5): 675 − 683.

    Zhao Jianfeng, Ma Zhiyong, Xie Deqiao, et al. Metal additive manufacturing technology[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(5): 675 − 683.
    Colegrove P, Coules H E, Fairman J, et al. Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling[J]. Journal of Materials Processing Technology, 2013, 213(10): 1782 − 1791. doi: 10.1016/j.jmatprotec.2013.04.012
    Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Materialia, 2010, 58(9): 3303 − 3312. doi: 10.1016/j.actamat.2010.02.004
    王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题[J]. 航空学报, 2014, 35(10): 2690 − 2698.

    Wang Huaming. Laser additive manufacturing of high-performance large metal components: some material foundation issues[J]. Acta Aeronautica ET Astronautica Sinica, 2014, 35(10): 2690 − 2698.
    Stecker S, Lachenberg KW, Wang H, et al. Advanced electron beam free form fabrication methods & technology[J]. Session, 2006(2): 35 − 46.
    邓贤辉, 杨治军. 钛合金增材制造技术研究现状及展望[J]. 材料开发与应用, 2014, 29(5): 113 − 120.

    Deng Xianhui, Yang Zhijun. Research status and development of additive manufacturing technology of titanium alloy[J]. Development and Application of Materials, 2014, 29(5): 113 − 120.
    黄志涛, 巩水利, 锁红波, 等. 电子束熔丝成形的TC4钛合金的组织与性能研究[J]. 钛工业进展, 2016, 33(5): 33 − 36.

    Huang Zhitao, Gong Shuili, Suo Hongbo, et al. Study on microstructure and properties of TC4 titanium alloy formed by electron beam fuse[J]. Advances in Titanium Industry, 2016, 33(5): 33 − 36.
  • Related Articles

    [1]LIU Deyi, CAI Jianwei, REN Ruiming. Microstructure and properties of diffusion bonded interface of titanium-copper interlayer-carbon steel composite tube[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (1): 49-52.
    [2]CHEN Jian, LIU Xuepiao, LIANG Huan, CUI Ting, FANG Kai. Bonding properties of plasma sprayed Cr3C2-NiCr and NiAl/Cr3C2-NiCr coatings on CuCrZr alloy surface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (5): 13-16.
    [3]WANG Jiajie, ZHANG Ying, MO Shuhua, WANG Guoxing, LI Xianshuang. Microstructures and adhesive strength of functionally gradient coating on crucible substrate sprayed by HVOF[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (10): 33-36.
    [4]LIU Shi-cheng, CHEN Ru-shu, LIU De-yi. Transient liquid phase diffusion bonding of Cu-Ni alloy mild steel composite pipe[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (1): 21-24.
    [5]WANG Fu-liang, LI Jun-hui, HAN Lei, ZHONG Jue. Effect of bonding time on thick aluminum wire wedge bonding strength[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (5): 47-51.
    [6]QIU Chang-jun, ZHOU Wei, HE Bin, FAN Xiang-fang. Study and finite element method analysis for bond strength of high-strength coating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (4): 105-107.
    [7]LONG Zhi-li, HAN lei, WU Yun-xin, ZHOU Hong-quan. Effect of different temperature on strength of thermosonic bonding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (8): 23-26,38.
    [8]ZOU Jia-sheng, XU Zhi-rong, ZHAO Qi-zhang, CHEN Zheng. Bonding strength of double partial transient liquid phase bonding with Si3N4/Ti/Cu/Ni/Cu/Ti/Si3N4[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (2): 41-44.
    [9]Liu Huijie, Feng Jicai, Qian Yiyu. Interface Structures and Bonding Strength of SiC/TiAl Joints in Diffusion Bonding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (3): 170-174.
    [10]Feng Jicai, Liu Huijie, Han Shengyang, Li Zhuoran, Zhang Jiuhai. Interface Structures and Bonding Strength of SiC/Nb/SiC Diffusion Bonded Joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1997, (2): 20-23.
  • Cited by

    Periodical cited type(9)

    1. 夏忠虎,张友昭,任延杰,李相伟,张书彦. 一种新型增材制造FeCoNi中熵合金的时效硬化行为. 焊接. 2024(02): 36-42 .
    2. 田宪华,杨晓东,刘亚,王磊. 激光熔覆涂层材料的研究现状. 热加工工艺. 2024(06): 1-5+9 .
    3. 张欣,蒋淑英,杨昊炎,张恒玮,胡伟伟. CoCrMnNiMo_x高熵合金涂层的组织和耐磨耐蚀性研究. 材料保护. 2023(06): 106-114+122 .
    4. 卢煜,李春燕,田霖,翟建树,寇生中. 高熵合金的性能研究进展. 稀有金属. 2022(10): 1352-1364 .
    5. 鲁铭洋,张欣,蒋淑英,冯涛,王彦芳. 激光熔覆CoCrFeMnNiMo_x高熵合金的组织和耐蚀性研究. 精密成形工程. 2022(12): 50-57 .
    6. 冯伟,邹力维,韩宇,陈波,徐锴. 堆焊工艺对镍基276带极堆焊晶间腐蚀的影响规律. 压力容器. 2021(03): 25-30 .
    7. 李晓鹏,周龙,贺涛江,程锌谋,王庆梅,张英哲. 氩弧焊接方法制备FeCoNiCrAl高熵合金焊接接头的组织和力学性能研究. 贵州农机化. 2021(04): 27-30 .
    8. 黄晋培,章奇,李忠文,于治水. T10钢表面FeMoCoNiCrTi_x高熵合金熔覆层组织及性能. 有色金属科学与工程. 2020(03): 39-43+120 .
    9. 郝文俊,孙荣禄,牛伟,谭金花,李小龙. 合金元素影响高熵合金涂层组织及力学性能综述. 材料导报. 2020(S2): 1330-1333 .

    Other cited types(10)

Catalog

    Article views (416) PDF downloads (28) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return