Advanced Search
LI Junzhao, SUN Qingjie, YU Hang, ZHANG Pengcheng, LIU Yibo, ZENG Xianshan. Study on grain size and microstructure of TC4 titanium alloy TIG and laser welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 57-62, 70. DOI: 10.12073/j.hjxb.20211015001
Citation: LI Junzhao, SUN Qingjie, YU Hang, ZHANG Pengcheng, LIU Yibo, ZENG Xianshan. Study on grain size and microstructure of TC4 titanium alloy TIG and laser welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 57-62, 70. DOI: 10.12073/j.hjxb.20211015001

Study on grain size and microstructure of TC4 titanium alloy TIG and laser welding joint

More Information
  • Received Date: October 14, 2021
  • Available Online: July 06, 2022
  • The TC4 sheet was welded by TIG and laser welding technology. The effects of TIG welding current, welding speed and laser output power on the grain size, microstructure and microhardness of TC4 titanium alloy welded joint were analyzed. The experimental results show that laser welding had a lower heat input, and the width of weld zone and heat-affected zone was significantly reduced under the condition of complete penetration of TC4 titanium alloy sheet. The grain size of TIG welded joint increased with the increase of heat input. The grain size of welded joint decreased gradually with the increase of distance from the center of weld. The laser welded joint showed the characteristics of widmanstatten structure with the finer acicular martensite α' phase. The microstructure of martensite α' near the heat-affected zone was basket shaped, while the microstructure of martensite α' near the base metal was double phase of untransformed α phase and needle shaped martensite α'. With the increase of the distance from the weld centerline, the martensite content decreased gradually, and the weld microhardness decreased. At the same time, compared with TIG welding, TC4 laser welded joint had higher microhardness.
  • 孙文君, 王善林, 陈玉华, 等. 钛合金先进焊接技术研究现状[J]. 航空制造技术, 2019, 62(18): 63 − 72. doi: 10.16080/j.issn1671-833x.2019.18.063

    Sun Wenjun, Wang Shanlin, Chen Yuhua, wt al. Development of advanced welding technologies for titanium alloys[J]. Aeronautical Manufacturing Technology, 2019, 62(18): 63 − 72. doi: 10.16080/j.issn1671-833x.2019.18.063
    张颖云, 陈素明, 李波. 激光焊接参数对1.2mm TC4钛合金薄板焊缝的影响[J]. 焊管, 2019, 42(9): 26 − 31.

    Zhang Yinyun, Chen Suming, Li Bo. Influence of laser welding parameters on the weld of TC4 titanium alloy with 1.2 mm thickness[J]. Welded Pipe and Tube, 2019, 42(9): 26 − 31.
    马忠贤, 冯军宁, 胡志杰. 钛及钛合金型材研究进展[J]. 世界有色金属, 2016, 24: 52 − 53.

    Ma Zhongxian, Feng Junning, Hu Zhijie. Research and development of titanium and titanium alloys shapes[J]. World Nonferrous Metals, 2016, 24: 52 − 53.
    吴巍, 程广福, 高洪明, 等. TC4合金TIG焊接头组织转变与力学性能分析[J]. 焊接学报, 2009, 30(7): 81 − 84,117. doi: 10.3321/j.issn:0253-360X.2009.07.021

    Wu Wei, Cheng Guangfu, Gao Hongming, et al. Microstructure transformation and mechanical properties of TC4 alloy joints welded by TIG[J]. Transactions of the China Welding Institution, 2009, 30(7): 81 − 84,117. doi: 10.3321/j.issn:0253-360X.2009.07.021
    吴健文, 徐孟嘉, 范文艳, 等. 钛合金快频脉冲柔性波形调制TIG焊接工艺[J]. 机械工程学报, 2020, 56(6): 102 − 109. doi: 10.3901/JME.2020.06.102

    Wu Jianwen, Xu Mengjia, Fan Wenyan, et al. Flexible waveform interpulse TIG welding for titanium alloy[J]. Journal of Mechanical Engineering, 2020, 56(6): 102 − 109. doi: 10.3901/JME.2020.06.102
    杨烁, 宋文清, 曲伸, 等. 薄壁TC4钛合金激光焊缝成形试验研究[J]. 焊接, 2019(1): 5 − 11, 65.

    Yang Shuo, Song Wenqing, Qu Shen, et al. Experimental study on laser weld appearance of thin-walled TC4 titanium alloy[J]. Welding & Joining, 2019(1): 5 − 11, 65.
    Baruah M, Bag S. Influence of pulsation in thermo-mechanical analysis on laser micro-welding of Ti6Al4V alloy[J]. Optics and Laser Technology, 2017, 90: 40 − 51. doi: 10.1016/j.optlastec.2016.11.006
    段爱琴, 王振苏, 彭欢, 等. 咬边缺陷对TC4钛合金激光焊接头静力拉伸形变特征的影响[J]. 焊接学报, 2019, 40(11): 54 − 60, 163. doi: 10.12073/j.hjxb.2019400288

    Duan Aiqin, Wang Zhensu, Peng Huan, et al. Effect of undercut defect on deformation behavior TC4 titanium alloy laser welded butt joint under static tensile loading[J]. Transactions of the China Welding Institution, 2019, 40(11): 54 − 60, 163. doi: 10.12073/j.hjxb.2019400288
    黄炜, 王少刚, 李立泽, 等. 钛合金激光焊及其接头的显微组织与力学性能[J]. 材料开发与应用, 2019, 34(2): 20 − 27.

    Huang Wei, Wang Shaogang, Li Lize, et al. Laser beam welding of titanium alloy and microstructure and mechanical properties of welded joint[J]. Development and Application of Materials, 2019, 34(2): 20 − 27.
    Liu H, Nakata K, Yamamoto N, et al. Microstructural characteristics and mechanical properties in laser beam welds of Ti6Al4V alloy[J]. Journal of Materials Science, 2012, 47(3): 1460 − 1470. doi: 10.1007/s10853-011-5931-8
    Xu Z Z, Dong Z Q, Yu Z H, et al. Relationships between microhardness, microstructure, and grain orientation in laser-welded joints with different welding speeds for Ti6Al4V titanium alloy[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(5): 1277 − 1289. doi: 10.1016/S1003-6326(20)65295-5
  • Related Articles

    [1]ZHANG Zhifen, CHEN Shanben, ZHANG Yuming, WEN Guangrui. Research progress and prospect of welding intelligent monitoring technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(11): 10-20, 70. DOI: 10.12073/j.hjxb.20240707001
    [2]CHENG Yongchao, XIAO Jun, CHEN Shujun, ZHANG Yuming. Intelligent penetration welding of thin-plate gtaw process based on arc voltage feedback[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(12): 1-4. DOI: 10.12073/j.hjxb.2018390287
    [3]HE Peng, ZHANG Ling. Development of intelligent brazing technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(4): 124-128. DOI: 10.12073/j.hjxb.20170429
    [4]TAO Liang, SUN Tongjing, DUAN Bin, ZHANG Guangxian. Intelligent decision of welding quality classification based on rough set[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (7): 29-32.
    [5]LI Wen-hang, CHEN Shan-ben, LIN Tao, DU Quan-ying. An new discretization algorithm for intelligent modeling in welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (12): 45-48.
    [6]CHEN Shan-ben, LIN Tao, CHEN Wen-jie, QIU Tao. Concepts and technologies on intelligentized welding manufacturing engineering[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (6): 124-128.
    [7]PIAO Yong-Jie, LIN Tao, QUI Tao, CHEN San-ben. Application of Multi-Agent Systems in Welding Flexible Manufacturing System[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (5): 87-90,96.
    [8]YU Jian-rong, JIANG Li-pei, SUN Zhen-guo, WANG Jun-bo. One-knob Intelligent Control System of CO2 Welding Machine[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (3): 51-54.
    [9]Huang Shisheng, Cheng Taobo, You Yanjun, Zhong Hanru. Intelligent Control Technique Used for CO2 Welding Robot System Based on Bi-processor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1998, (2): 60-63.
    [10]Peng Jinning, Chen Bingsen, Zhu Ping. Intelligent Design of Welding Procedure Parameters Based on Neural Networks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1998, (1): 21-26.
  • Cited by

    Periodical cited type(2)

    1. 樊炳倩,沈闲. 激光选区熔化参数对热物理过程影响数学模型分析. 激光杂志. 2025(01): 222-227 .
    2. 袁健,何斌,张俊飞,陈国炎,张锁荣. 纳秒激光参数对316L不锈钢沟槽结构加工的影响. 金属加工(热加工). 2024(05): 61-66 .

    Other cited types(2)

Catalog

    Article views (483) PDF downloads (86) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return