Advanced Search
LIU Zhengjun, ZHANG Kun, LIU Changjun. Study on nonlinear time series model of vibration welding process of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 85-90. DOI: 10.12073/j.hjxb.2019400077
Citation: LIU Zhengjun, ZHANG Kun, LIU Changjun. Study on nonlinear time series model of vibration welding process of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 85-90. DOI: 10.12073/j.hjxb.2019400077

Study on nonlinear time series model of vibration welding process of aluminum alloy

More Information
  • Received Date: November 07, 2017
  • To solve the problems of hot cracks, pores and softening of welded joints in the traditional welding process of 7 series super hard aluminum, the mechanism of nonlinear relationship between welding process parameters and the strength of welded joints during vibration welding process is studied in the paper. The nonlinear time series prediction model of 7075 super hard aluminum vibration welded joints with process parameter measurement data. Used the parameter measurement data of 7075 super hard aluminum vibration welding process, the time series of welding process parameters is established, and the phase space reconstruction parameters and deterministic test methods of the welding process system are established based on time series. The artificial neural network model of the phase space phase point evolution trajectory is established in the basis of the nonlinear relationship between the phase evolution trajectory of the reconstructed phase space and the strength parameters of the welded joint. The model is used to calculate the physical parameters such as the elongation after fracture, tensile strength, hardness, weld reinforcement, maximum coarseness of the crystal, and the number of crystal grains. A series of welded joint strength tests for the established model show that the prediction results of this model can meet the engineering practical value.
  • Yu Xiuping, Sun Hua, Zhao Xiren, et al. Weld wild prediction based on artofocal neural network[J]. Transactions of the China Welding Institution, 2005, 26(5): 17 − 19, 45
    Kumar P V, Reddy G M, Rao K S. Microinstruction, mechanical and corrosion behavior of high strength AA7075 aluminium alloy friction stir weld-effect of post weld heat treatment[J]. Defence Technology, 2015, 11(4): 362 − 369.
    Yao Ping, Xue Jiaxiang, Meng Wanjun, et al. Influence of processing parameters on weld forming in double-pulsed MIG welding of aluminum alloy[J]. Transactions of the China Welding Institution, 2009, 20(3): 69 − 72
    赵海洋. 铝合金搅拌摩擦焊焊接接头组织及疲劳断裂行为研究[D]. 天津: 天津大学, 2010.
    Tong Jianhua, Zhang Kun, Lin Song, et al. Comparison of fatigue property of 6082 aluminum alloy joint by friction stir welding and metal inert-gas welding[J]. Transactions of the China Welding Institution, 2015, 36(7): 105 − 108
    刘长军. 双脉冲MIG焊7075超硬铝合金焊接接头组织与性能的研究[D]. 沈阳: 沈阳工业大学, 2017.
    于秀萍, 孙 华, 赵希人, 等. 基于人工神经网络的焊缝宽度预测[J]. 焊接学报, 2005, 26(5): 17 − 19

    , 45
    Xia Weisheng, Zhang Haiou, Wang Guilan, et al. Intelligent process modeling of robotic plasma spraying based on multi-layer artificial neural network[J]. Transactions of the China Welding Institution, 2009, 30(7): 41 − 44.
    姚 萍, 薛家祥, 蒙万君, 等. 工艺参数对铝合金双脉冲MIG焊焊缝成形的影响[J]. 焊接学报, 2009, 20(3): 69 − 72
    Yi J, Cao S F, Li L X, et al. Effect of welding current on morphology and micro-structure of Al alloy T-joint in double-pulsed MIG welding[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(10): 3204 − 3211.
    佟建华, 张 坤, 林 松, 等. 搅拌摩擦焊和熔化极气体保护焊6082 铝合金疲劳性能分析[J]. 焊接学报, 2015, 36(7): 105 − 108
    夏卫生, 张海鸥, 王桂兰, 等. 基于多层ANN的机器人等离子熔射智能化模型[J]. 焊接学报, 2009, 30(7): 41 − 44
  • Related Articles

    [1]XIE Yuxin, GONG Yefei, GU Xinhao, CHEN Xiaobin, WANG Meng, XU Huigang. Research on weld surface defect detection method based on RGB-D feature fusion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(12): 72-78. DOI: 10.12073/j.hjxb.20230712002
    [2]GUO Zhongfeng, LIU Junchi, YANG Junlin. Weld recognition based on key point detection method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 88-93. DOI: 10.12073/j.hjxb.20230204001
    [3]WANG Rui, HU Yunlei, LIU Weipeng, LI Haitao. Defect detection of weld X-ray image based on edge AI[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 79-84. DOI: 10.12073/j.hjxb.20210516001
    [4]LI Hexi, HAN Xinle, FANG Zaojun. A visual model of welding robot based on CNN deep learning[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 154-160. DOI: 10.12073/j.hjxb.2019400060
    [5]GAO Weixin, HU Yuheng, WU Xiaomeng. A new algorithm for detecting defects of sub-arc welding x-ray image based on compress sensor theory[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(11): 85-88.
    [6]LI Xueqin, LIU Peiyong, YIN Guofu, JIANG Honghai. Weld defect detection by X-ray images method based on Fourier fitting surface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(10): 61-64.
    [7]SHAO Jiaxin, DU Dong, ZHU Xinjie, GAO Zhiling, WANG Chen. Weld defect detection of double sides weld based on X-ray digitized image[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (11): 21-24.
    [8]CHEN Ming, MA Yuezhou, CHEN Guang. Weld defects detection for X-ray linear array real-time imaging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (6): 81-84.
    [9]CAI Guorui, DU Dong, TIAN Yuan, HOU Runshi, GAO Zhiling. Defect detection of X-ray images of weld using optimized heuristic search based on image information fusion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (2): 29-32.
    [10]LIANG De-qun, SHEN San, YANG Hai-jun. Measurement of Deep Sclae on Weld Defects based on Point X-Pay Source[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (3): 5-8.
  • Cited by

    Periodical cited type(19)

    1. 戴铮,刘骁佳,潘泉. 基于CCBFE-RCNN模型的焊缝X射线图像缺陷识别算法. 焊接学报. 2025(01): 24-33 . 本站查看
    2. 简珂,王帅,李强. 基于连通域分析的钢管焊缝缺陷检测方法. 测控技术. 2025(02): 11-17 .
    3. 李闯,马行,穆春阳,刘永鹿,秦政硕,张弘. 改进YOLOv3的轻量级铸件焊缝表面缺陷检测. 组合机床与自动化加工技术. 2024(01): 156-159+163 .
    4. 张婷,王登武. 基于空洞分层注意力胶囊网络的X射线焊缝缺陷识别方法. 宇航计测技术. 2024(02): 45-51 .
    5. 穆春阳,李闯,马行,刘永鹿,杨科,刘宝成. 改进YOLOv7-tiny的轻量化大型铸件焊缝缺陷检测. 组合机床与自动化加工技术. 2024(07): 156-160 .
    6. 傅留虎. 基于轻量化特征增强网络的焊缝缺陷检测方法. 焊接. 2024(07): 38-49+57 .
    7. 李国栋,吴志生,彭甫镕,郝康将,昝晓亮,郭威. 基于有监督对比学习的焊缝缺陷X射线检测方法. 焊接. 2024(07): 7-14 .
    8. 苏志威,黄子涵,邱发生,郭朝阳,殷晓芳,邬冠华. 基于改进YOLOv8的航空铝合金焊缝缺陷检测方法. 航空动力学报. 2024(06): 121-129 .
    9. 宋杰三. 基于改进Yolov8的焊缝缺陷检测研究. 中国设备工程. 2024(14): 196-199 .
    10. 李兴红. 基于深度学习的液氯罐车射线图像缺陷自动识别研究. 中国高新科技. 2024(12): 15-17 .
    11. 张小刚,俞东宝,汤慧,朱永利. 基于深度学习的X射线燃料棒端塞缺陷自动检测方法研究. 原子能科学技术. 2024(08): 1767-1776 .
    12. 贾韶辉,李亚平,高炜欣,彭云超,张新建,王玉霞. 基于X射线图像与稀疏描述的管道环焊缝缺陷自动识别法. 油气储运. 2024(09): 1048-1055+1079 .
    13. 张睿,李吉. 多级多尺神经网络自搜索的焊缝缺陷语义分割. 计算机辅助设计与图形学学报. 2024(11): 1750-1760 .
    14. 谢雨欣,龚烨飞,谷心浩,陈晓彬,王萌,徐惠钢. 基于RGB-D特征融合的焊缝表面缺陷检测方法. 焊接学报. 2024(12): 72-78 . 本站查看
    15. 张睿,高美蓉,傅留虎,张鹏云,白晓露,赵娜. 基于多域多尺度深度特征自适应融合的焊缝缺陷检测研究. 振动与冲击. 2023(17): 294-305+313 .
    16. 郑孝干,杨毅豪,林啸,吕雷,肖毓勇,黄潞璐. 基于AI的输电线路导线断散股缺陷检测方法. 电工技术. 2023(20): 69-71+74 .
    17. 田伟倩,朱华兵,张淋,胡斌. 基于卷积神经网络的工业缺陷检测研究进展. 中国特种设备安全. 2023(12): 1-7 .
    18. 邓智超,颜润明,杨蕙同,陈浩林,赖锦祥,雷亮. 基于改进残差网络的多视图焊点缺陷检测. 焊接学报. 2022(03): 56-62+116 . 本站查看
    19. 杨国威,张金丽. 基于光栅投影的焊后焊缝表面三维测量. 焊接学报. 2022(04): 100-105+112+119-120 . 本站查看

    Other cited types(17)

Catalog

    Article views (158) PDF downloads (8) Cited by(36)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return