Advanced Search
SUI Ran, LIN Qiaoli. Wetting behavior of monocrystalline Si by SnAgCu-xTi alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 90-96. DOI: 10.12073/j.hjxb.20191122001
Citation: SUI Ran, LIN Qiaoli. Wetting behavior of monocrystalline Si by SnAgCu-xTi alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 90-96. DOI: 10.12073/j.hjxb.20191122001

Wetting behavior of monocrystalline Si by SnAgCu-xTi alloys

More Information
  • Received Date: November 21, 2019
  • Available Online: July 26, 2020
  • The wetting behavior of molten Sn0.3Ag0.7Cu (SAC)-xTi (x=wt.%) on the surface of monocrystalline Si at 800−900 ℃ was studied under high vacuum by the modified drop method. The results show that SAC-xTi/Si system belongs to the inert wetting system, and the Ti addition improved wettability, significantly. Without Ti addition, the system achieved the equilibrium contact angle of 63° after 1 800 s at 800 °C; With 1% Ti addition, the system achieved the lowest equilibrium contact angle of 41° after 1 800 s at 900 °C; With 3% Ti addition, the system achieved the fastest spreading in 50 s at 900 °C. The wetting mechanism is that the active component Ti accelerates the removal of oxide film on the surface of monocrystalline Si. During the spreading process of the molten solder, the temperature-dependent “pyramid” microstructure was formed at the solid/liquid interface through dissolution-reprecipitation mechanism and micro-mask mechanism, i.e., the higher temperature induced the sparse and larger “pyramid” microstructures. The appearance of “pyramid” microstructures did not improve the wettability of the system, on the contrary, the wettability became worse due to the pinning of the triple line.
  • Awais A, Dong H G, Xia Y Q, et al. Lap joining Al5052 to Ti6Al4V by GTAW with AlSi5 filler wire[J]. China Welding, 2019, 28(2): 15 − 23.
    朱永权, 张丽霞, 任伟, 等. 表面活化Al2O3陶瓷与5005铝合金真空钎焊[J]. 焊接学报, 2018, 39(11): 78 − 82.

    Zhu Yongquan, Zhang Lixia, Ren Wei, et al. Vacuum brazing of active metallized Al2O3 ceramic to 5005 aluminum alloy[J]. Transactions of the China Welding Institution, 2018, 39(11): 78 − 82.
    潘泽浩, 程战, 刘磊, 等. 石英玻璃飞秒激光微连接及其接头性能[J]. 焊接学报, 2016, 37(6): 5 − 8.

    Pan Zehao, Cheng Zhan, Liu Lei, et al. Microwelding of fused silica by femtosecond laser and the joint mechanical properties[J]. Transactions of the China Welding Institution, 2016, 37(6): 5 − 8.
    李文文, 熊华平, 吴欣, 等. Co-Nb-Pd-Ni-V钎料真空钎焊Cf/SiC复合材料的接头组织与性能[J]. 焊接学报, 2019, 40(9): 128 − 132.

    Li Wenwen, Xiong Huaping, Wu Xin, et al. Microstructure and strength of the Cf/SiC composite joint brazed with Co-Nb-Pd-Ni-V filler alloy[J]. Transactions of the China Welding Institution, 2019, 40(9): 128 − 132.
    Chen S J, Tang H J, Zhao P F. A two-step transient liquid phase diffusion bonding process of T91 steels[J]. China Welding, 2017, 26(2): 52 − 57.
    Cheng L X, Li G Y, Wang X Q, et al. Influence of active element Ti on interfacial reaction and soldering strength between Sn3.5Ag4Ti(Ce,Ga) alloy filler and Si substrate[J]. Materials Science and Engineering: A, 2016, 658: 42 − 49. doi: 10.1016/j.msea.2016.01.100
    Tsao L C, Chang S Y, Huang M S, et al. Direct robust active bonding between Al heat sink and Si substrate[C]//International Conference on Electronic Packaging Technology & High Density Packaging. Guilin: IEEE, 2012: 1635 − 1638.
    Yu D Q, Wu C M L, Wong Y M, et al. Direct robust bonding between Sn-based solder and Si substrate[J]. Journal of Materials Science-Materials in Electronics, 2007, 18(10): 1057 − 1063. doi: 10.1007/s10854-006-9114-3
    杨景卫, 曹彪, 柳健, 等. 压力对纯铜超声焊接界面行为的影响[J]. 焊接学报, 2018, 39(2): 53 − 56.

    Yang Jingwei, Cao Biao, Liu Jian, et al. Effect of welding pressure on interfacial behavior of ultra-sonic-welded copper joints[J]. Transactions of the China Welding Institution, 2018, 39(2): 53 − 56.
    Eustathopoulos N, Nicholas M G, Drevet B. Wettability at high temperatures[M]. Oxford: Elsevier, 1999.
    Murarka S P, Fraser D B. Thin film interaction between titanium and polycrystalline silicon[J]. Journal of Applied Physics, 1980, 51(1): 342 − 349. doi: 10.1063/1.327378
    Ogawa S I, Kouzaki T, Yoshida T, et al. Interface microstructure of titanium thin-film/silicon single-crystal substrate correlated with electrical barrier heights[J]. Journal of Applied Physics, 1991, 70(2): 827 − 832. doi: 10.1063/1.349641
    闫文青, 张建强, 刘升. 氩弧熔敷Ti-Si-C系陶瓷涂层中物相的热力学预测[J]. 焊接学报, 2017, 38(5): 108 − 111.

    Yan Wenqing, Zhang Jianqiang, Liu Sheng. Thermodynamic prediction for phases of ceramic coatings in Ti-Si-C system by argon arc depositing[J]. Transactions of the China Welding Institution, 2017, 38(5): 108 − 111.
    Gosálvez M A, Nieminen R M. Surface morphology during anisotropic wet chemical etching of crystalline silicon[J]. New Journal of Physics, 2003, 5(1): 100.1 − 100.28.
    Khanna A, Basu P K, Filipovic A, et al. Influence of random pyramid surface texture on silver screen-printed contact formation for monocrystalline silicon wafer solar cells[J]. Solar Energy Materials and Solar Cells, 2015, 132: 589 − 596. doi: 10.1016/j.solmat.2014.10.018
    Koleňák R, Prach M. Research of joining brittle nonmetallic materials with an active solder[J]. Advances in Materials Science and Engineering, 2014, 2014: 1 − 9.
    Liu X J, Niu Y C, Zhai T G, et al. Wettability investigating on the wet etching textured multicrystalline silicon wafer[J]. Applied Physics A, 2016, 122(2): 127.1 − 127.8.
  • Related Articles

    [1]YANG Dongsheng, ZHANG He, FENG Jiayun, SA Zicheng, WANG Chenxi, TIAN Yanhong. Research progress on micro/nano joining technologies and failure behaviors in electronic packaging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(11): 126-136. DOI: 10.12073/j.hjxb.20220702003
    [2]XU Jiejie, WANG Dong, XIAO Rongshi, HUANG Ting. Laser joining of fiber reinforced thermoplastic composites and metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 73-86. DOI: 10.12073/j.hjxb.20200904002
    [3]SONG Bo, ZUO Dunwen, DENG Yongfang. Amplitude and periodicity of friction stir joining force of 2024 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(7): 13-16.
    [4]HE Peng, JIAO Zhen, WANG Jun, LIN Tiesong. Research and application of joining technology at nanometer scale[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (2): 109-112.
    [5]ZHAI Qiuya, YANG Jinshan, JING Ming, XU Jinfeng. Rapid solidification joining of Cu/Ni-matrix heterogeneous alloy foils[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (7): 31-34.
    [6]LIU Hongli, LI Muqin. Effect of active filler on joining property of silicon carbide to itself by polysilazane[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (6): 65-67.
    [7]LEI Zhen, YU Ning, YOU Aiqing, LIN Shangyang. Fusion-brazing joining between 5A02 aluminium alloy and Q235 steel by Nd:YAG laser-pulsed MIG hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (6): 21-24,28.
    [8]CAO Jian, FENG Ji-cai, LI Zhuo-ran. Joining of TiAl intermetallic by self-propagating high-temperature synthesis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (11): 5-7.
    [9]CAO Jian, FENG Ji-cai, LI Zhuo-ran. Selection of interlayer for field-assisted self-propagated high temperature joining of TiAl alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 1-4.
    [10]SHEN Qiang, WANG Chuan-bin, ZHANG Lian-meng. Joining Tungsten Alloy-molybdenum Layered Flier plates by Hot press Sintering[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (2): 26-28.
  • Cited by

    Periodical cited type(2)

    1. 张敏,朱子越,许桓瑞,王刚,杜明科,王博玉. Zn元素对Sn0.5Ag0.7Cu/Cu接头剪切性能和时效接头组织结构的影响. 焊接学报. 2021(05): 57-64+101-102 . 本站查看
    2. 李晓鹏,张泽宇,王伟,范霁康,彭勇,王克鸿. 基于飞秒激光表面修饰的石英玻璃润湿性分析. 焊接学报. 2020(11): 18-24+98 . 本站查看

    Other cited types(1)

Catalog

    Article views (576) PDF downloads (25) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return