Advanced Search
XU Jiejie, WANG Dong, XIAO Rongshi, HUANG Ting. Laser joining of fiber reinforced thermoplastic composites and metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 73-86. DOI: 10.12073/j.hjxb.20200904002
Citation: XU Jiejie, WANG Dong, XIAO Rongshi, HUANG Ting. Laser joining of fiber reinforced thermoplastic composites and metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 73-86. DOI: 10.12073/j.hjxb.20200904002

Laser joining of fiber reinforced thermoplastic composites and metal

More Information
  • Received Date: September 03, 2020
  • Available Online: November 15, 2021
  • The structure composed with fiber reinforced thermoplastic composites and metal is effective to realize lightweight in the modern equipment manufacturing. Therefore, it is of great academic significance and practical value to achieve high quality, efficient and reliable joining in between. This paper reviews the recent research achievement of laser joining of fiber reinforced thermoplastic composites and metal at home and abroad. The laser joining principle, the bonding mechanism of interface as well as its strengthening methods, and the influence of laser joining parameters on shear strength were introduced in detail. The shear strength has satisfied the requirement of industrial application by using mechanical bonding and chemical bonding strengthening methods as well as avoiding joining defects through controlling the heat input, providing the clamping pressure, and using additional resin. Finally the tendency of development in the near future is predicated.
  • Che D, Saxena I, Han P, et al. Machining of carbon fiber reinforced plastics/polymers: a literature review[J]. Journal of Manufacturing Science and Engineering, 2014, 136(3): 034001.1 − 034001.22.
    Frketic J, Dickens T, Ramakrishnan S. Automated manufacturing and processing of fiber-reinforced polymer (FRP) composites: An additive review of contemporary and modern techniques for advanced materials manufacturing[J]. Additive Manufacturing, 2017, 14: 69 − 86. doi: 10.1016/j.addma.2017.01.003
    Huang D, Zhao X. Novel modified distribution functions of fiber length in fiber reinforced thermoplastics[J]. Composites Science and Technology, 2019, 182: 107749.1 − 107749.12.
    Soutis C. Fibre reinforced composites in aircraft construction[J]. Progress in Aerospace Sciences, 2005, 41(2): 143 − 151. doi: 10.1016/j.paerosci.2005.02.004
    Zhang X, Chen Y, Hu J. Recent advances in the development of aerospace materials[J]. Progress in Aerospace Sciences, 2018, 97: 22 − 34. doi: 10.1016/j.paerosci.2018.01.001
    Kaufman B, Briant C. Metallurgical design and industry: prehistory to the space age[M]. Switzerlang: Springer, 2018.
    Hashish M, Kent W. Trimming of CFRP aircraft components[R]. Proceedings of the WaterJet Technology Association-Industrial & Municipal Cleaning Association(WJTA-IMCA) Conference and Expo, 2013.
    Jerome P, Cedex B. Composite materials in the airbus A380-from history to future[R]. Proceedings of the Beijing: Proceedings 13th International Conference on Composite Materials (ICCM-13), Plenary Lecture, CD-ROM, 2001.
    Krebs F, Larsen L, Braun G, et al. Design of a multifunctional cell for aerospace CFRP production[M]. Heidelberg, Advances in Sustainable and Competitive Manufacturing Systems, 2013.
    Baldwin H. The new-technology boeing 787 dreamliner, which makes extensive use of composite materials, promises to revolutionize commercial air travel[J]. Aviation Week & Space Technology, 2005(3): S1 − S30.
    M'saoubi R, Axinte D, Soo S, et al. High performance cutting of advanced aerospace alloys and composite materials[J]. CIRP Annals, 2015, 64(2): 557 − 580. doi: 10.1016/j.cirp.2015.05.002
    Pramanik A, Basak A, Dong Y, et al. Joining of carbon fibre reinforced polymer (CFRP) composites and aluminium alloys – A review[J]. Composites Part A:Applied Science and Manufacturing, 2017, 101: 1 − 29. doi: 10.1016/j.compositesa.2017.06.007
    Lambiase F, Ko D-C. Feasibility of mechanical clinching for joining aluminum AA6082-T6 and carbon fiber reinforced polymer sheets[J]. Materials & Design, 2016, 107: 341 − 52.
    Wang H, Yang K, Liu L. The analysis of welding and riveting hybrid bonding joint of aluminum alloy and polyether-ether-ketone composites[J]. Journal of Manufacturing Processes, 2018, 36: 301 − 308. doi: 10.1016/j.jmapro.2018.10.031
    Mariam M, Afendi M, Majid M, et al. Tensile and fatigue properties of single lap joints of aluminium alloy/glass fibre reinforced composites fabricated with different joining methods [J]. Composite Structures, 2018, 200: 647-658.
    Sadowski T, Golewski P, Zarzeka-Raczkowska E. Damage and failure processes of hybrid joints: adhesive bonded aluminium plates reinforced by rivets[J]. Computational Materials Science, 2011, 50(4): 1256 − 1262. doi: 10.1016/j.commatsci.2010.06.022
    Galvez P, Abenojar J, Martinez M. Durability of steel-CFRP structural adhesive joints with polyurethane adhesives[J]. Composites Part B:Engineering, 2019, 165: 1 − 9. doi: 10.1016/j.compositesb.2018.11.097
    Altin M, Gökkaya H. A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials[J]. Defence Technology, 2018, 14(4): 318 − 326. doi: 10.1016/j.dt.2018.02.001
    Goh G, Dikshit V, Nagalingam A, et al. Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics[J]. Materials & Design, 2018, 137: 79 − 89.
    Liu D, Tang Y, Cong W. A review of mechanical drilling for composite laminates[J]. Composite Structures, 2012, 94(4): 1265 − 1279. doi: 10.1016/j.compstruct.2011.11.024
    Lionetto F, Mele C, Leo P, et al. Ultrasonic spot welding of carbon fiber reinforced epoxy composites to aluminum: mechanical and electrochemical characterization[J]. Composites Part B:Engineering, 2018, 144: 134 − 142. doi: 10.1016/j.compositesb.2018.02.026
    张增焕, 苏轩, 李昊, 等. 导能筋形状对超声波焊接CF/PEEK接头组织和力学性能的影响[J]. 焊接学报, 2019, 40(9): 93 − 98.

    Zhang Zenghuan, Su Xuan, Li Hao, et al. Effect of energy director on microstructure and mechanical properties of CF/PEEK joints obtained by ultrasonic welding[J]. Transactions of the China Welding Institution, 2019, 40(9): 93 − 98.
    Goushegir S M, Dos Santos J F, Amancio-Filho S T. Friction spot joining of aluminum AA2024/carbon-fiber reinforced poly (phenylene sulfide) composite single lap joints: microstructure and mechanical performance[J]. Materials & Design, 2014, 54: 196 − 206.
    Mitschang P, Velthuis R, Emrich S, et al. Induction heated joining of aluminum and carbon fiber reinforced nylon 66[J]. Journal of Thermoplastic Composite Materials, 2009, 22(6): 767 − 801. doi: 10.1177/0892705709105969
    王传洋, 姜沐晖, 龙庆, 等. 激光工艺参数对PC/Cu/PC焊接性能及残余应力影响[J]. 焊接学报, 2021, 42(1): 24 − 29. doi: 10.12073/j.hjxb.20201019002

    Wang Chuanyang, Jiang Muhui, Long Qing, et al. Influence of laser process parameters on PC/Cu/PC welding performance and residual stress[J]. Transactions of the China Welding Institution, 2021, 42(1): 24 − 29. doi: 10.12073/j.hjxb.20201019002
    David S, Debroy T. Current issues and problems in welding science[J]. Science, 1992, 257(5069): 497 − 502. doi: 10.1126/science.257.5069.497
    Christensen C. New laser source technology[J]. Science, 1984, 224(4645): 117 − 23. doi: 10.1126/science.224.4645.117
    Katayama S, Kawahito Y, Mizutani M. Latest progress in performance and understanding of laser welding[J]. Physics Procedia, 2012, 39: 8 − 16. doi: 10.1016/j.phpro.2012.10.008
    Atanasov, Peter A. Laser welding of plastics: theory and experiments[J]. Optical Engineering, 1995, 34(10): 2976 − 2980. doi: 10.1117/12.210747
    Holtkamp J, Roesner A, Gillner A. Advances in hybrid laser joining[J]. The International Journal of Advanced Manufacturing Technology, 2009, 47(9-12): 923 − 930.
    Cantrell J. Determination of absolute bond strength from hydroxyl groups at oxidized aluminum-epoxy interfaces by angle beam ultrasonic spectroscopy[J]. Journal of Applied Physics, 2004, 96(7): 3775 − 3781. doi: 10.1063/1.1787144
    Jung K W, Kawahito Y, Takahashi M, et al. Laser direct joining of carbon fiber reinforced plastic to zinc-coated steel[J]. Materials & Design, 2013, 47: 179 − 188.
    Roesner A, Scheik S, Olowinsky A, et al. Innovative approach of joining hybrid components[J]. Journal of Laser Applications, 2011, 23(3): 3337 − 3344.
    Jung K W, Kawahito A Y, Takahashi M, et al. Laser direct joining of carbon fiber reinforced plastic to aluminum alloy[J]. Journal of Laser Applications, 2013, 25(3): 530 − 533.
    Jung K W, Kawahito Y, Takahashi M, et al. Laser direct joining of carbon fibre reinforced plastic to stainless steel[J]. Science and Technology of Welding and Joining, 2013, 16(8): 676 − 680.
    Wagner W C, Asgar K, Bigelow W C, et al. Effect of interfacial variables on metal-porcelain bonding[J]. Journal of Biomedical Materials Research, 1993, 27(4): 531 − 537. doi: 10.1002/jbm.820270414
    Georgiev G L, Baird R J, Mccullen E F, et al. Chemical bond formation during laser bonding of Teflon® FEP and titanium[J]. Applied Surface Science, 2009, 255(15): 7078 − 7083. doi: 10.1016/j.apsusc.2009.03.046
    Chou N J, Tang C H. Interfacial reaction during metallization of cured polyimide: An XPS study[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 1984, 2(2): 751 − 755.
    Katayama S, Kawahito Y. Laser direct joining of metal and plastic[J]. Scripta Materialia, 2008, 59(12): 1247 − 1250. doi: 10.1016/j.scriptamat.2008.08.026
    Ho P S, Hahn P O, Bartha J W, et al. Chemical bonding and reaction at metal/polymer interfaces[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 1985, 3(3): 739 − 745.
    Jordan J L, Kovac C A, Morar J F, et al. High-resolution photoemission study of the interfacial reaction of Cr with polyimide and model polymers[J]. Physcial Review B, Condens Matter, 1987, 36(3): 1369 − 1377. doi: 10.1103/PhysRevB.36.1369
    Desiraju G R. The weak hydrogen bond: In structural chemistry and biology[M]. Britain: Oxford University Press, 1999.
    Steiner T. The hydrogen bond in the solid state[J]. Angewandte Chemie International Edition, 2002, 41(1): 48 − 76. doi: 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U
    顾继友. 胶接理论与胶接基础[M]. 北京: 科学出版社, 2004.

    Gu Jiyou. Bonding theory and bonding foundation[M]. Beijing: Science Press, 2004.
    Saborowski E, Dittes A, Steinert P, et al. Effect of metal surface topography on the interlaminar shear and tensile strength of aluminum/polyamide 6 polymer-metal-hybrids[J]. Materials (Basel), 2019, 12(18): 2963.1 − 2963.16.
    Shimamoto K, Sekiguchi Y, Sato C. Effects of surface treatment on the critical energy release rates of welded joints between glass fiber reinforced polypropylene and a metal[J]. International Journal of Adhesion and Adhesives, 2016, 67: 31 − 37. doi: 10.1016/j.ijadhadh.2015.12.022
    Rauschenberger J, Cenigaonaindia A, Keseberg J, et al. Laser hybrid joining of plastic and metal components for lightweight components[J]. Proceedings of Spie the International Society for Optical Engineering, 2015, 9356: 1 − 10.
    Heckert A, Zaeh M F. Laser surface pre-treatment of aluminium for hybrid joints with glass fibre reinforced thermoplastics[J]. Physics Procedia, 2014, 56: 1171 − 1181. doi: 10.1016/j.phpro.2014.08.032
    Boutar Y, Sami Naïmi, Mezlini S, et al. Effect of surface treatment on the shear strength of aluminium adhesive single-lap joints for automotive applications[J]. International Journal of Adhesion and Adhesives, 2016, 67: 38 − 43. doi: 10.1016/j.ijadhadh.2015.12.023
    Sheng L Y, Lai C, Xu Z F, et al. Effect of the surface texture on laser joining of a carbon fiber-reinforced thermosetting plastic and stainless steel[J]. Strengh of Materials, 2019, 51(1): 122-129.
    Schricker K, Stambke M, Bergmann J P, et al. Macroscopic surface structures for polymer-metal hybrid joints manufactured by laser based thermal joining[J]. Physics Procedia, 2014, 56: 782 − 790. doi: 10.1016/j.phpro.2014.08.086
    Zhang Z, Shan J, Tan X, et al. Improvement of the laser joining of CFRP and aluminum via laser pre-treatment[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(9): 3465 − 3472.
    Rodríguez-Vidal E, Sanz C, Soriano C, et al. Effect of metal micro-structuring on the mechanical behavior of polymer–metal laser T-joints[J]. Journal of Materials Processing Technology, 2016, 229: 668 − 677. doi: 10.1016/j.jmatprotec.2015.10.026
    Amend P, Pfindel S, Schmidt M. Thermal joining of thermoplastic metal hybrids by means of mono- and polychromatic radiation[J]. Physics Procedia, 2013, 41: 98 − 105. doi: 10.1016/j.phpro.2013.03.056
    Henrottin A, Patars J, Ramos-de-Campos J. New approach for assembling dissimilar materials: laser technology[J]. Journal of Laser Micro Nanoengineering, 2018, 13(3): 296 − 300.
    Kira V D S, Burkhardt I, Olowinsky A, et al. Laser-induced self-organizing microstructures on steel for joining with plymers[J]. Physics Procedia, 2016, 83: 1137 − 1144. doi: 10.1016/j.phpro.2016.08.119
    Al-Sayyad A, Bardon J, Hirchenhahn P, et al. Aluminum pretreatment by a laser ablation process: influence of processing parameters on the joint strength of laser welded aluminum–polyamide assemblies[J]. Procedia CIRP, 2018, 74: 495 − 499. doi: 10.1016/j.procir.2018.08.136
    Straeten K, Sparla J, Olowinsky A, et al. Influence of self-organizing microstructures on the wettability of molten plastic on steel for hybrid plastic-metal joints[J]. Welding in the World, 2019, 63(5): 1431 − 1441. doi: 10.1007/s40194-019-00765-6
    Moldovan E, Tierean M, Stanciu E. Overview of joining dissimilar materials: Metals and polymers[J]. Bulletin of the Transilvania University of Brasov, 2017, 10(59): 39 − 46.
    Lambiase F, Genna S. Experimental analysis of laser assisted joining of Al-Mg aluminium alloy with Polyetheretherketone (PEEK)[J]. International Journal of Adhesion and Adhesives, 2018, 84: 265 − 274. doi: 10.1016/j.ijadhadh.2018.04.004
    管迎春. 一种基于互锁结构的激光选区加工连接金属与热塑性复合材料的方法: 中国, 201811118298.0[P]. 2019-01-22.

    Guan Yingchun. A laser selective machining method for joining metal and thermoplastic composites based on interlocking structure: China, 201811118298.0[P]. 2019-01-22.
    盛立远. 一种提升热塑性复合材料与金属连接强度的方法: 中国, 201810069446.8[P]. 2018-07-20.

    Sheng Liyuan. A method for improving the bonding strength of thermoplastic composites and metal: China, 201810069446.8[P]. 2018-07-20.
    Roesner A, Scheik S, Olowinsky A, et al. Laser assisted joining of plastic metal hybrids[J]. Physics Procedia, 2011, 12: 370 − 377. doi: 10.1016/j.phpro.2011.03.146
    Engelmann C, Eckstaedt J, Olowinsky A, et al. Experimental and simulative investigations of laser assisted plastic-metal-joints considering different load directions[J]. Physics Procedia, 2016, 83: 1118 − 1129. doi: 10.1016/j.phpro.2016.08.117
    Ma F, Chen S, Han L, et al. Experimental and numerical investigation on the strength of polymer-metal hybrid with laser assisted metal surface treatment[J]. Journal of Adhesion Science and Technology, 2019, 33(10): 1112 − 1129. doi: 10.1080/01694243.2019.1582888
    Tao H, Lin J, Hao Z, et al. Formation of strong light-trapping nano- and microscale structures on a spherical metal surface by femtosecond laser filament[J]. Applied Physics Letters, 2012, 100(20): 1673 − 1775.
    Zhang Z, Shan J, Tan X, et al. Evaluation of the CFRP grafting and its influence on the laser joining CFRP to aluminum alloy[J]. Journal of Adhesion Science and Technology, 2018, 32(4): 390 − 406. doi: 10.1080/01694243.2017.1357457
    谭向虎, 单际国, 任家烈. 镀 Cr 层对低碳钢/CFRP激光连接接头剪切强度及界面结合特征的影响[J]. 金属学报, 2013, 49(6): 751 − 756. doi: 10.3724/SP.J.1037.2013.00045

    Tan Xianghu, Shan Jiguo, Ren Jialie. Effects of Cr plating layer on shear strength and interface bonding characteristics of mild steel/CFRP joint by laser heating[J]. Acta Metallurgica Sinica Chinese Edition, 2013, 49(6): 751 − 756. doi: 10.3724/SP.J.1037.2013.00045
    Zhang Z, Shan J G, Tan X H, et al. Effect of anodizing pretreatment on laser joining CFRP to aluminum alloy A6061[J]. International Journal of Adhesion and Adhesives, 2016, 70: 142 − 151. doi: 10.1016/j.ijadhadh.2016.06.007
    Niedermeier M. Load introduction and coconnections[J]. Mechanics of Composite Materials, 2013, 11: 1 − 6.
    Arkhurst B M, Seol J B, Lee Y S, et al. Interfacial structure and bonding mechanism of AZ31/carbon-fiber-reinforced plastic composites fabricated by thermal laser joining[J]. Composites Part B:Engineering, 2019, 167: 71 − 82. doi: 10.1016/j.compositesb.2018.12.002
    Tan X, Zhang J, Shan J, et al. Characteristics and formation mechanism of porosities in CFRP during laser joining of CFRP and steel[J]. Composites Part B:Engineering, 2015, 70: 35 − 43.
    Su J, Tan C, Wu Z, et al. Influence of defocus distance on laser joining of CFRP to titanium alloy[J]. Optics & Laser Technology, 2020, 124: 106006.1 − 106006.10.
    Tan C, Su J, Zhu B, et al. Effect of scanning speed on laser joining of carbon fiber reinforced PEEK to titanium alloy[J]. Optics & Laser Technology, 2020, 129(3): 106273.
    Sheng L Y, Jiao J K, Lai C. Assessment of the microstructure and mechanical properties of a laser-joined carbon fiber-reinforced thermosetting plastic and stainless steel[J]. Strength of Materials, 2018, 50(5): 752 − 63. doi: 10.1007/s11223-018-0020-8
    Wang F, Jiao J, Wang Q, et al. A research on CFRP and stainless steel joining with fiber lasers[C]//International Congress on Applications of Lasers & Electro-Optics, 2015: 709-715.
    Tao W, Su X, Chen Y, et al. Joint formation and fracture characteristics of laser welded CFRP/TC4 joints[J]. Journal of Manufacturing Processes, 2019, 45: 1 − 8. doi: 10.1016/j.jmapro.2019.05.028
    Tan X , Zhang J , Shan J , et al. The damage characteristics and mechanism of CFRP during laser joining of CFRP/mild steel dissimilar joint[C]//International Congress on Applications of Lasers & Electro-Optics, 2013: 582-589.
    Li Y, Bu H, Yang H, et al. Effect of laser heat input on the interface morphology during laser joining of CFRTP and 6061 aluminum alloy[J]. Journal of Manufacturing Processes, 2020, 50: 366 − 379. doi: 10.1016/j.jmapro.2019.12.023
    Jiao J, Ye Y, Jia S, et al. CFRTP -Al alloy laser assisted joining with a high speed rotational welding technology[J]. Optics & Laser Technology, 2020, 127: 106187.1 − 106187.8.
    Jiao J, Xu Z, Wang Q, et al. Research on carbon fiber reinforced thermal polymer/stainless steel laser direct joining[J]. Journal of Laser Applications, 2018, 30(3): 032419.1 − 032419.8.
    Wang D, Xu J, Huang T, et al. Effect of beam shaping on laser joining of CFRP and Al-Li alloy[J]. Optics & Laser Technology, 2021, 143: 107336.1 − 107336.6.
    Kawahito Y, Tange A, Kubota S, et al. Development of direct laser joining for metal and plastic[C]//International Congress on Applications of Lasers & Electro-Optics. Laser insititute of America, 2006:604.
    Sheng L, Jiao J, Du B, et al. Influence of processing parameters on laser direct joining of CFRTP and stainless steel[J]. Advances in Materials Science and Engineering, 2018, 2530521: 1 − 15.
    Amend P, Mallmann G, Roth S, et al. Process-structure-property relationship of laser-joined thermoplastic metal hybrids[J]. Journal of Laser Applications, 2016, 28(2): 022403.1 − 022403.6.
    Klaus S, Martin S, Pierre B J, et al. Laser-based joining of thermoplastics to metals: influence of varied ambient conditions on joint performance and microstructure[J]. International Journal of Polymer Science, 2016, 2016: 1 − 9.
    Jiao J, Wang Q, Wang F, et al. Numerical and experimental investigation on joining CFRTP and stainless steel using fiber lasers[J]. Journal of Materials Processing Technology, 2017, 240: 362 − 369. doi: 10.1016/j.jmatprotec.2016.10.013
    Lambiase F, Genna S, Kant R. Optimization of laser-assisted joining through an integrated experimental-simulation approach[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(5-8): 2655 − 2666. doi: 10.1007/s00170-018-2113-8
    王强, 焦俊科, 昝少平, 等. 接触热导率对CFRTP/不锈钢激光直接连接温度场的影响[J]. 中国激光, 2017, 4: 36 − 44.

    Wang Qiang, Jiao Junke, Zan Shaoping, et al. Effect of thermal contact conductanceon temperature field of CFRTP/stainless steel laser direct joining[J]. Chinese Journal of Lasers Chinese Edition, 2017, 4: 36 − 44.
    Jiao J, Xu Z, Wang Q, et al. CFRTP and stainless steel laser joining: Thermal defects analysis and joining parameters optimization[J]. Optics & Laser Technology, 2018, 103: 170 − 176.
    Wang H, Chen Y, Guo Z, et al. Porosity elimination in modified direct laser joining of Ti6Al4V and thermoplastics composites[J]. Applied Sciences, 2019, 9(3): 411.1 − 411.8.
    Jiao J, Jia S, Xu Z, et al. Laser direct joining of CFRTP and aluminium alloy with a hybrid surface pre-treating method[J]. Composites Part B:Engineering, 2019, 173: 106911.1 − 106911.7.
    Sheng L Y, Wang F Y, Wang Q, et al. Shear strength optimization of laser-joined polyphenylene sulfide-based CFRTP and stainless steel[J]. Strength of Materials, 2018, 50(5): 824 − 831. doi: 10.1007/s11223-018-0028-0
    Chen Y J, Yue T M, Guo Z N. Combined effects of temperature field and ultrasonic vibation on bubble motion in lasr joining of plastic to metal[J]. Journal of Materials Processing Technology, 2021, 288: 116846.1 − 116846.14.
    Chen Y J, Yue T M, Guo Z N. Laser joining of metals to plastics with ultrasonic vibration[J]. Journal of Materials Processing Technology, 2017, 249: 441 − 451. doi: 10.1016/j.jmatprotec.2017.06.036
  • Cited by

    Periodical cited type(1)

    1. 乔小丽,曹帅,武靖伟,张建晓,黄健康,樊丁. Inconel 600镍基合金PAW+TIG接头微观组织及力学性能. 焊接学报. 2024(06): 105-112 . 本站查看

    Other cited types(0)

Catalog

    Article views (502) PDF downloads (80) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return