Citation: | TAO Wang, WANG Xian, CHEN Ao, LI Liqun. Stress field and mechanical properties of laser metal deposited aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 62-66. DOI: 10.12073/j.hjxb.20191013002 |
Chang Yunfeng, Lei Zhen, Wang Xuyou, et al. Characteristic of laser-MIG hybrid welding with filling additional cold wire for aluminum alloy[J]. China Welding, 2018, 27(3): 35 − 41.
|
汪汉萍, 杨晓益, 陈辉, 等. 130 mm铝合金扫描激光填丝焊接头微区组织和性能[J]. 焊接学报, 2019, 40(11): 87 − 92. doi: 10.12073/j.hjxb.2019400293
Wang Hanping, Yang Xiaoyi, Chen Hui, et al. Micro-area organization and performance of 130 mm Al alloy scanning laser filler wire welded joint[J]. Transactions of the China welding institution, 2019, 40(11): 87 − 92. doi: 10.12073/j.hjxb.2019400293
|
Lei Zhen, Li Xiaoyu, Xu Fujia, et al. Laser-pulsed MIG hybrid welding technology of A6N01S aluminum alloy[J]. China Welding, 2017, 26(4): 10 − 19.
|
Deutsch M G, Punkari A, Weckman D C, et al. Weldability of 1.6 mm thick aluminium alloy 5182 sheet by single and dual beam ND: YAG laser welding[J]. Science and Technology of Welding and Joining, 2003, 8(4): 246 − 256. doi: 10.1179/136217103225005499
|
Aboulkhair N T, Maskery I, Tuck C, et al. The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment[J]. Materials Science & Engineering A, 2016, 667: 139 − 146.
|
Ding Y, Muniz-lerma J, Trask M, et al. Microstructure and mechanical property considerations in additive manufacturing of aluminum alloys[J]. MRS Bulletin, 2017, 41(10): 745 − 751.
|
Chen B, Yao Y Z, Song X G, et al. Microstructure and mechanical properties of additive manufacturing AlSi10Mg alloy using direct metal deposition[J]. Ferroelectrics, 2018, 523(1): 153 − 166. doi: 10.1080/00150193.2018.1392147
|
Javidani M, Arreguin-zavala J, Danovitch J, et al. Additive manufacturing of AlSi10Mg alloy using direct energy deposition: microstructure and hardness characterization[J]. Journal of Thermal Spray Technology, 2017, 26(4): 587 − 597. doi: 10.1007/s11666-016-0495-4
|
刘昊, 虞钢, 何秀丽, 等. 送粉式激光熔覆中瞬态温度场与几何形貌的三维数值模拟[J]. 中国激光, 2013, 40(12): 78 − 85.
Liu Hao, Yu Gang, He Xiuli, et al. Three-dimensional numerical simulation of transient temperature field and coating geometry in powder feeding laser cladding[J]. Chinese Journal of Lasers, 2013, 40(12): 78 − 85.
|
董敢. 同轴送粉激光熔覆熔池数值模拟[D]. 长沙: 湖南大学, 2013.
Dong Gan. Numerical simulation of molten pool in coaxial powder-feed laser cladding[D]. Changsha : Hunan University, 2013.
|
[1] | GE Yaqiong, SONG Yue, CHANG Zexin, HOU Qingling, XU Haijun, QIAO Jianfu, HOU Min. Forming Quality and Microstructure of Al0.5CoCrFeNi Bulk High-Entropy Alloy Fabricated by Selective Laser Melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 89-95. DOI: 10.12073/j.hjxb.20231128003 |
[2] | WANG Yongdong, GONG Shulin, CHANG Mengyang, WANG Jinyu, REN yuanda, JING zonghao. Effect of Nb components on the microstructure and mechanical properties of high-entropy alloy coatings[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 107-113. DOI: 10.12073/j.hjxb.20230329001 |
[3] | WANG Yongdong, GONG Shulin, TANG Mingri, SONG Min. Effect of laser cladding process on the microstructure and properties of high entropy alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 116-122. DOI: 10.12073/j.hjxb.20220928001 |
[4] | Min ZHENG, Jin YANG, Yixuan ZHAO, Wenhu XU, Caiwang TAN, Hua ZHANG. Mechanism of improved wetting and spreading properties of Al-Si alloy/steel system by porous high entropy alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 25-33, 79. DOI: 10.12073/j.hjxb.20220502002 |
[5] | WANG Leilei, LIU Ting, DUAN Shuyao, ZHAN Xiaohong. Effect of element distribution on the microstructure of FeCoCrNi high entropy alloy coating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 57-64. DOI: 10.12073/j.hjxb.20210707004 |
[6] | TIAN Qichao, MA Honghao, SHEN Zhaowu, CHEN Zijun, ZHAO Kai, Zhao Yang. Explosive welding and performance test of Al0.1CoCrFeNi high-entropy alloy/TA2 composite plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(6): 22-29. DOI: 10.12073/j.hjxb.20200506002 |
[7] | SU Yunhai, LIANG Xuewei, DENG Yue, LIU Yunqi. Microstructure and property analysis of FeAlCuCrNiNbx high-entropy alloy surfacing layer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 38-43, 50. DOI: 10.12073/j.hjxb.20191015001 |
[8] | SU Yunhai, DENG Yue, DOU Lijie, LIANG Xuewei. Effect of Mo content on microstructure and properties of FeAlCuCrNiMox alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 111-115,160. DOI: 10.12073/j.hjxb.2019400245 |
[9] | DONG Shizhi, MENG Xu, MA Zhuang, ZHAO Yuechao. Effects of WC and Al2O3 on the microstructure and erosion wear resistance of FeAlCoCrCuTi0.4 high-entropy alloy coating by argon arc cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 127-132. DOI: 10.12073/j.hjxb.2019400194 |
[10] | WANG Jianxin, YIN Ming, LAI Zhongmin, LI Xue. Wettability and microstructure of Sn-Ag-Cu-In solder[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (11): 69-72. |
1. |
关皓真,张裕,孙磊,吴艳明. 脉冲熔化极气体保护焊弧长神经网络建模及参数预测. 材料开发与应用. 2024(03): 28-35 .
![]() | |
2. |
王超,陈信宇,吴春彪,李雷,王洁. 基于快速蜜蜂试验法的304不锈钢激光焊工艺优化. 焊接学报. 2023(02): 102-110+135 .
![]() | |
3. |
杜晓辉,陈凡红,刘帅,朱敏杰,许佳豪. 压力传感器波纹膜片低应力激光焊接工艺. 光学精密工程. 2023(11): 1652-1659 .
![]() | |
4. |
杨华庆,张建护,唐德渝,王克宽. 机器人立体视觉系统标定误差预测补偿技术. 控制工程. 2022(04): 757-762 .
![]() | |
5. |
朱胜,张雨豪,郭迎春,王晓明,常青,赵阳. 高能微弧沉积H65黄铜涂层试验研究. 热加工工艺. 2021(14): 102-104+108 .
![]() | |
6. |
易润华,邓黎鹏,程东海,刘奋成. 基于多指标综合评分方差分析的镍铬合金储能缝焊工艺研究. 材料导报. 2021(14): 14161-14165 .
![]() | |
7. |
刘晓明,刘威,李龙女,朱高嘉,姜文涛. 基于改进神经网络和遗传算法的真空灭弧室优化设计. 真空科学与技术学报. 2020(04): 359-364 .
![]() | |
8. |
任书文,陈士忠,刘子金,夏忠贤,侯爱山,王永华. 钢筋骨架焊接工艺参数的优化研究. 建筑机械化. 2020(11): 98-101 .
![]() | |
9. |
尹燕,赵超,潘存良,路超,张瑞华. 气体流量对射频等离子体球化GH4169合金粉末的影响. 焊接学报. 2019(11): 100-105+165 .
![]() |