Advanced Search
TAO Wang, WANG Xian, CHEN Ao, LI Liqun. Stress field and mechanical properties of laser metal deposited aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 62-66. DOI: 10.12073/j.hjxb.20191013002
Citation: TAO Wang, WANG Xian, CHEN Ao, LI Liqun. Stress field and mechanical properties of laser metal deposited aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 62-66. DOI: 10.12073/j.hjxb.20191013002

Stress field and mechanical properties of laser metal deposited aluminum alloys

More Information
  • Received Date: October 12, 2019
  • Available Online: July 26, 2020
  • Through grooves in the 6 mm thickness ZL114A aluminum plate were repaired by the laser metal deposition process, and the filling powder was AlSi10Mg powder. In order to determine the scanning strategy, the residual stress generated with different scanning strategies was calculated by numerical simulation. The process of laser melting deposition was realized by the path scanning method with the smallest residual stress, and the influence of defects and heat input on the mechanical properties of the test workpiece was further studied. The results show that the layer-by-layer scanning strategy generated less the residual stress compared with the parallel scanning strategy. In terms of mechanical properties, by optimizing the process, the tensile strength of the tensile specimens has reached 268 MPa, which is 89% of the tensile strength of the substrate. Besides, the fracture location of the specimen was not along the interface between the deposition area and the substrate, but in the overlapping area between the deposition tracks.
  • Chang Yunfeng, Lei Zhen, Wang Xuyou, et al. Characteristic of laser-MIG hybrid welding with filling additional cold wire for aluminum alloy[J]. China Welding, 2018, 27(3): 35 − 41.
    汪汉萍, 杨晓益, 陈辉, 等. 130 mm铝合金扫描激光填丝焊接头微区组织和性能[J]. 焊接学报, 2019, 40(11): 87 − 92. doi: 10.12073/j.hjxb.2019400293

    Wang Hanping, Yang Xiaoyi, Chen Hui, et al. Micro-area organization and performance of 130 mm Al alloy scanning laser filler wire welded joint[J]. Transactions of the China welding institution, 2019, 40(11): 87 − 92. doi: 10.12073/j.hjxb.2019400293
    Lei Zhen, Li Xiaoyu, Xu Fujia, et al. Laser-pulsed MIG hybrid welding technology of A6N01S aluminum alloy[J]. China Welding, 2017, 26(4): 10 − 19.
    Deutsch M G, Punkari A, Weckman D C, et al. Weldability of 1.6 mm thick aluminium alloy 5182 sheet by single and dual beam ND: YAG laser welding[J]. Science and Technology of Welding and Joining, 2003, 8(4): 246 − 256. doi: 10.1179/136217103225005499
    Aboulkhair N T, Maskery I, Tuck C, et al. The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment[J]. Materials Science & Engineering A, 2016, 667: 139 − 146.
    Ding Y, Muniz-lerma J, Trask M, et al. Microstructure and mechanical property considerations in additive manufacturing of aluminum alloys[J]. MRS Bulletin, 2017, 41(10): 745 − 751.
    Chen B, Yao Y Z, Song X G, et al. Microstructure and mechanical properties of additive manufacturing AlSi10Mg alloy using direct metal deposition[J]. Ferroelectrics, 2018, 523(1): 153 − 166. doi: 10.1080/00150193.2018.1392147
    Javidani M, Arreguin-zavala J, Danovitch J, et al. Additive manufacturing of AlSi10Mg alloy using direct energy deposition: microstructure and hardness characterization[J]. Journal of Thermal Spray Technology, 2017, 26(4): 587 − 597. doi: 10.1007/s11666-016-0495-4
    刘昊, 虞钢, 何秀丽, 等. 送粉式激光熔覆中瞬态温度场与几何形貌的三维数值模拟[J]. 中国激光, 2013, 40(12): 78 − 85.

    Liu Hao, Yu Gang, He Xiuli, et al. Three-dimensional numerical simulation of transient temperature field and coating geometry in powder feeding laser cladding[J]. Chinese Journal of Lasers, 2013, 40(12): 78 − 85.
    董敢. 同轴送粉激光熔覆熔池数值模拟[D]. 长沙: 湖南大学, 2013.

    Dong Gan. Numerical simulation of molten pool in coaxial powder-feed laser cladding[D]. Changsha : Hunan University, 2013.
  • Related Articles

    [1]GE Yaqiong, SONG Yue, CHANG Zexin, HOU Qingling, XU Haijun, QIAO Jianfu, HOU Min. Forming Quality and Microstructure of Al0.5CoCrFeNi Bulk High-Entropy Alloy Fabricated by Selective Laser Melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 89-95. DOI: 10.12073/j.hjxb.20231128003
    [2]WANG Yongdong, GONG Shulin, CHANG Mengyang, WANG Jinyu, REN yuanda, JING zonghao. Effect of Nb components on the microstructure and mechanical properties of high-entropy alloy coatings[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 107-113. DOI: 10.12073/j.hjxb.20230329001
    [3]WANG Yongdong, GONG Shulin, TANG Mingri, SONG Min. Effect of laser cladding process on the microstructure and properties of high entropy alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 116-122. DOI: 10.12073/j.hjxb.20220928001
    [4]Min ZHENG, Jin YANG, Yixuan ZHAO, Wenhu XU, Caiwang TAN, Hua ZHANG. Mechanism of improved wetting and spreading properties of Al-Si alloy/steel system by porous high entropy alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 25-33, 79. DOI: 10.12073/j.hjxb.20220502002
    [5]WANG Leilei, LIU Ting, DUAN Shuyao, ZHAN Xiaohong. Effect of element distribution on the microstructure of FeCoCrNi high entropy alloy coating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 57-64. DOI: 10.12073/j.hjxb.20210707004
    [6]TIAN Qichao, MA Honghao, SHEN Zhaowu, CHEN Zijun, ZHAO Kai, Zhao Yang. Explosive welding and performance test of Al0.1CoCrFeNi high-entropy alloy/TA2 composite plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(6): 22-29. DOI: 10.12073/j.hjxb.20200506002
    [7]SU Yunhai, LIANG Xuewei, DENG Yue, LIU Yunqi. Microstructure and property analysis of FeAlCuCrNiNbx high-entropy alloy surfacing layer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 38-43, 50. DOI: 10.12073/j.hjxb.20191015001
    [8]SU Yunhai, DENG Yue, DOU Lijie, LIANG Xuewei. Effect of Mo content on microstructure and properties of FeAlCuCrNiMox alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 111-115,160. DOI: 10.12073/j.hjxb.2019400245
    [9]DONG Shizhi, MENG Xu, MA Zhuang, ZHAO Yuechao. Effects of WC and Al2O3 on the microstructure and erosion wear resistance of FeAlCoCrCuTi0.4 high-entropy alloy coating by argon arc cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 127-132. DOI: 10.12073/j.hjxb.2019400194
    [10]WANG Jianxin, YIN Ming, LAI Zhongmin, LI Xue. Wettability and microstructure of Sn-Ag-Cu-In solder[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (11): 69-72.
  • Cited by

    Periodical cited type(9)

    1. 关皓真,张裕,孙磊,吴艳明. 脉冲熔化极气体保护焊弧长神经网络建模及参数预测. 材料开发与应用. 2024(03): 28-35 .
    2. 王超,陈信宇,吴春彪,李雷,王洁. 基于快速蜜蜂试验法的304不锈钢激光焊工艺优化. 焊接学报. 2023(02): 102-110+135 . 本站查看
    3. 杜晓辉,陈凡红,刘帅,朱敏杰,许佳豪. 压力传感器波纹膜片低应力激光焊接工艺. 光学精密工程. 2023(11): 1652-1659 .
    4. 杨华庆,张建护,唐德渝,王克宽. 机器人立体视觉系统标定误差预测补偿技术. 控制工程. 2022(04): 757-762 .
    5. 朱胜,张雨豪,郭迎春,王晓明,常青,赵阳. 高能微弧沉积H65黄铜涂层试验研究. 热加工工艺. 2021(14): 102-104+108 .
    6. 易润华,邓黎鹏,程东海,刘奋成. 基于多指标综合评分方差分析的镍铬合金储能缝焊工艺研究. 材料导报. 2021(14): 14161-14165 .
    7. 刘晓明,刘威,李龙女,朱高嘉,姜文涛. 基于改进神经网络和遗传算法的真空灭弧室优化设计. 真空科学与技术学报. 2020(04): 359-364 .
    8. 任书文,陈士忠,刘子金,夏忠贤,侯爱山,王永华. 钢筋骨架焊接工艺参数的优化研究. 建筑机械化. 2020(11): 98-101 .
    9. 尹燕,赵超,潘存良,路超,张瑞华. 气体流量对射频等离子体球化GH4169合金粉末的影响. 焊接学报. 2019(11): 100-105+165 . 本站查看

    Other cited types(9)

Catalog

    Article views (538) PDF downloads (26) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return