Advanced Search
DONG Hang, CONG Ming, ZHANG Yuming, CHEN Heping. Characteristic performance modeling method for weld pool based on KF-GPR[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(12): 49-52. DOI: 10.12073/j.hjxb.2018390296
Citation: DONG Hang, CONG Ming, ZHANG Yuming, CHEN Heping. Characteristic performance modeling method for weld pool based on KF-GPR[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(12): 49-52. DOI: 10.12073/j.hjxb.2018390296

Characteristic performance modeling method for weld pool based on KF-GPR

More Information
  • Received Date: August 20, 2017
  • To help an automatic welding machine on reasoning dynamic welding process, a Kalman Filter Gaussian Process Regression (KF-GPR) model was proposed, and its theoretical basis was annualized. A prediction model was established later. Compared to conventional statistic method, the KF-GRP method can better estimate the distributed form and parameters for a dynamic welding process, which had higher robustness and fault tolerance. TIG welding experiment of the 304 stainless steel was carried out to verify the method. Totally 8 423 pairs of experiment data were collected and used for the model. The modeling results showed the proposed KF-GPR can suppress noises and provide fast and accurate model, which is essential for future online control experiment.
  • Chen H, Li B, Gravel D, et al. Robot learning for complex manufacturing process[C]//2015 IEEE International Conference on Industrial Technology (ICIT), 2015: 3207?3211.
    Liu Y K, Zhang W J, Zhang Y M. A tutorial on learning human welder’s behavior: sensing, modeling, and control[J]. Journal of Manufacturing processes, 2014, 16(1): 123 ? 136.
    Song H, Zhang Y M. Measurement and analysis of three dimensional specular gas tungsten arc weld pool surface[J]. Welding Research, 2008, 87(4): 85s ? 95s.
    高向东, 张 弛, 周晓虎. 微间隙焊缝磁光成像NN-KF跟踪算法[J]. 焊接学报, 2017, 38(1): 9 ? 12
    Gao xiangdong, Zhang Chi, Zhou Xiaohu. NN-KF of magneto-optical imaging for micro-gap seam tracking[J]. Transautions of the China Welding Institution, 2017, 38(1): 9 ? 12
    Rasmussen C E. Gaussian processes for machine learning[J]. MIT Press, 2006, 2(3): 4.
    Dong Hang, Cong Ming, Liu Yukang, et al. Predicting characteristic performance for arc welding process[C]//Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), 2016 IEEE International Conference on. IEEE, 2016: 7?12.
  • Related Articles

    [1]SHEN Lei, HUANG Jiankang, LIU Guangyin, YU Shurong, FAN Ding, SONG Min. Microstructure and properties of titanium alloy made by plasma arc and AC auxiliary arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 57-63. DOI: 10.12073/j.hjxb.20220918002
    [2]LI Junzhao, SUN Qingjie, YU Hang, ZHANG Pengcheng, LIU Yibo, ZENG Xianshan. Study on grain size and microstructure of TC4 titanium alloy TIG and laser welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 57-62, 70. DOI: 10.12073/j.hjxb.20211015001
    [3]WANG Leilei, LIU Ting, DUAN Shuyao, ZHAN Xiaohong. Effect of element distribution on the microstructure of FeCoCrNi high entropy alloy coating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 57-64. DOI: 10.12073/j.hjxb.20210707004
    [4]WANG Ting, WANG Yifan, WEI Lianfeng, LI Qixian, JIANG Siyuan. Microstructure and properties of low voltage electron beam wire deposition layer of TC4 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 54-59. DOI: 10.12073/j.hjxb.20200803002
    [5]QIN Hang, CAI Zhihai, ZHU Jialei, WANG Kai, LIU Jian. Microstructure and properties of TC4 titanium alloy by direct underwater laser beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 143-148. DOI: 10.12073/j.hjxb.2019400328
    [6]GAO Xiaogang1, DONG Junhui1, HAN Xu1, HOU Jijun1, XU Dewei2. Weld shape and microstructure of Ti6Al4V alloy fluoride A-TIG weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 31-34. DOI: 10.12073/j.hjxb.20161026006
    [7]LANG Bo, ZHANG Tiancang, TAO Jun, GUO Delun. Microstructure in linear friction welded dissimillar titanium alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (7): 105-108,112.
    [8]GU Baolan, DING Dawei, WANG Li, XU Xuedong. Effects of heat treatment on microstructure and properties of electron beam welded TC4 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (10): 85-88.
    [9]LIU Shi-fu, SHEN Yi-fu, WANG Shao-gang. Microstructure analyse of surface Ti-metallized graphite[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 89-92.
    [10]Meng Qinseng, Wan Bao. Influence of microstructural appearances of slag on detachability of electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1993, (3): 202-206.
  • Cited by

    Periodical cited type(7)

    1. 张普,曹四龙. Al_2O_3+TiO_2复合颗粒对激光熔覆Inconel 718基润滑涂层显微组织及高温磨损行为的影响研究. 材料保护. 2024(06): 8-19 .
    2. 魏来,李丹,董振. 原位自生(Ti, V)C堆焊层的耐磨性能. 沈阳工业大学学报. 2023(01): 43-47 .
    3. 刘海浪,卢儒学,陈健,徐珖韬,张倩. 镍基合金电子束熔覆表面改性及高温耐磨性研究. 金属热处理. 2021(04): 161-166 .
    4. 吴雁楠,黄诗铭,朱平,马振一,兰博,何翰伟,郝博文. 原位碳化钛颗粒增强镍基喷焊层的组织与性能. 热加工工艺. 2021(22): 96-98+102 .
    5. 马强,陈明宣,孟君晟,李成硕,史晓萍,彭欣. 纯铜表面氩弧熔覆TiB_2/Ni复合涂层组织及耐磨性能. 焊接学报. 2021(09): 90-96+102 . 本站查看
    6. 王永东,杨在林,张宇鹏,朱艳. Y_2O_3对原位自生TiC增强Ni基涂层组织和性能影响. 焊接学报. 2020(02): 53-57+100 . 本站查看
    7. 陈鹏涛,曹梅青,吕萧,仇楠楠. 氩弧熔敷原位合成ZrC-TiB_2增强铁基涂层的组织与性能. 上海金属. 2020(05): 15-20 .

    Other cited types(2)

Catalog

    Article views (453) PDF downloads (0) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return