Advanced Search
CHANG Yunfeng, LEI Zhen, WANG Xuyou, YANG Haifeng. Stability of laser-MIG hybrid welding process with filling wire for aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(10): 119-123. DOI: 10.12073/j.hjxb.2018390260
Citation: CHANG Yunfeng, LEI Zhen, WANG Xuyou, YANG Haifeng. Stability of laser-MIG hybrid welding process with filling wire for aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(10): 119-123. DOI: 10.12073/j.hjxb.2018390260

Stability of laser-MIG hybrid welding process with filling wire for aluminum alloy

More Information
  • Received Date: May 07, 2017
  • Weld appearance, the stabilities of penetration depth, reinforcement as well as porosity, laser keyhole characteristic and plasma characteristic were studied by using a new laser-MIG hybrid welding process with filling wire of aluminum alloy. The results were also compared with those by conventional laser-MIG hybrid welding process. It is found that with the suitable process parameters, this new welding process for aluminum alloy was stable. The extra wire deposited continuously and the keyhole had obvious periodic variations, including formation, growth and annihilation. The final weld bead had fine appearance. Compared to conventional laser-MIG hybrid welding process, during this new welding process the stabilities of penetration depth and reinforcement were similar, while the keyhole opening area had differences of 15.34%, the total area of plasma and arc had differences of 1.95%.
  • 肖荣诗, 陈 铠, 左铁钏. 高强铝合金激光焊接新进展[J]. 应用激光, 2002, 22(2): 206 ? 208
    Xiao Rongshi, Chen Kai, Zuo Tiechuan. Laser welding recent development of high strength aluminum alloy[J]. Applied Laser, 2002, 22(2): 206 ? 208
    Bunaziv I, Akselsen O M, Salminen A, et al. Fiber laser-MIG hybrid welding of 5 mm 5083 aluminum alloy[J]. Journal of Materials Processing Technology, 2016, 233: 107 ? 114.
    吴圣川, 朱宗涛. 铝合金的激光焊接及性能评价[M]. 北京: 国防工业出版社, 2014.
    Xu L H, Tian Z L,Peng Y, et al. Microstructure and mechanical properties of high strength aluminum alloy laser welds[J]. Chinese Journal of Lasers, 2008, 35(3): 456 ? 461.
    Kutsuna M, Suzuki J, Kimura S, et al. CO2 laser welding of A2219, A5083 and A6063 aluminum alloys[J]. Welding in the World, 1993, 31(2): 126 ? 135.
    Binroth C, Zuo T, Sepold G. CO2-laser beam welding with filler material of high strength aluminum alloy[C] // Proceedings of 2nd International Power Beam Technology Conference, 1990: 119-127.
    Seto N, Katayama S, Matsunawa A. High-speed simultaneous observation of plasma and keyhole behavior during high power CO2 laser welding: effect of shielding gas on porosity formation[J]. Journal of Laser Applications, 2000, 12(6): 245 ? 250.
    丁 灏, 马云霞, 白培康, 等. 铝合金激光焊新技术[J]. 热加工工艺, 2012, 41(3): 111 ? 113
    Ding Hao, Ma Yunxia, Bai Peikang, et al. The new laser welding technology of aluminum alloy[J]. Hot Working Technology, 2012, 41(3): 111 ? 113
    雷正龙, 陈彦宾, 李 颖, 等. 铝合金CO2激光-TIG电弧复合焊接试验研究[J]. 航天制造技术, 2012, 8(4): 35 ? 37
    Lei Zhenglong, Chen Yanbin, Li Ying, et al. CO2 laser-TIG hybrid welding of aluminum alloy[J]. Aerospace Manufacturing Technology, 2012, 8(4): 35 ? 37
    Lei Zhen, Li Xiaoyu, Xu Fujia, et al. Laser-pulsed MIG hybrid welding technology of A6N01S aluminum alloy[J]. China Welding, 2017, 26(4): 10 ? 19.
    王 威, 王旭友, 秦国梁, 等. 铝合金激光-小功率脉冲MIG电弧复合热源焊接特性分析[J]. 焊接学报, 2007, 28(8): 37 ? 40
    Wang Wei, Wang Xuyou, Qin Guoliang, et al. Welding characteristics of laser-low power pulse MIG hybrid welding aluminum allou[J]. Transactions of the China Welding Institution, 2007, 28(8): 37 ? 40
    王旭友, 王 威, 林尚扬. 焊接参数对铝合金激光-MIG电弧复合焊缝熔深的影响[J]. 焊接学报, 2008, 29(6): 13 ? 16
    Wang Xuyou, Wang Wei, Lin Shangyang. Effect of welding parameter on weld penetration in laser-MIG hybrid welding of aluminum alloy[J]. Transactions of the China Welding Institution, 2008, 29(6): 13 ? 16
    王旭友, 雷 振, 张 健, 等. 高速列车6005A-T6铝合金型材激光-双丝MIG复合焊[J]. 焊接学报, 2012, 33(7): 9 ? 12
    Wang Xuyou, Lei Zhen, Zhang Jian, et al. Laser-tandem MIG hybrid welding for 6005A-T6 aluminum alloy profile of high-speed train[J]. Transactions of the China Welding Institution, 2012, 33(7): 9 ? 12
    Chiang S, Albright C E. Light-material interaction in laser material processing[C]// Proceedings of the SPIE, Washington, 1989, 1031:522-531.
  • Related Articles

    [1]SHEN Lei, HUANG Jiankang, LIU Guangyin, YU Shurong, FAN Ding, SONG Min. Microstructure and properties of titanium alloy made by plasma arc and AC auxiliary arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 57-63. DOI: 10.12073/j.hjxb.20220918002
    [2]LI Junzhao, SUN Qingjie, YU Hang, ZHANG Pengcheng, LIU Yibo, ZENG Xianshan. Study on grain size and microstructure of TC4 titanium alloy TIG and laser welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 57-62, 70. DOI: 10.12073/j.hjxb.20211015001
    [3]WANG Leilei, LIU Ting, DUAN Shuyao, ZHAN Xiaohong. Effect of element distribution on the microstructure of FeCoCrNi high entropy alloy coating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 57-64. DOI: 10.12073/j.hjxb.20210707004
    [4]WANG Ting, WANG Yifan, WEI Lianfeng, LI Qixian, JIANG Siyuan. Microstructure and properties of low voltage electron beam wire deposition layer of TC4 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 54-59. DOI: 10.12073/j.hjxb.20200803002
    [5]QIN Hang, CAI Zhihai, ZHU Jialei, WANG Kai, LIU Jian. Microstructure and properties of TC4 titanium alloy by direct underwater laser beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 143-148. DOI: 10.12073/j.hjxb.2019400328
    [6]GAO Xiaogang1, DONG Junhui1, HAN Xu1, HOU Jijun1, XU Dewei2. Weld shape and microstructure of Ti6Al4V alloy fluoride A-TIG weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 31-34. DOI: 10.12073/j.hjxb.20161026006
    [7]LANG Bo, ZHANG Tiancang, TAO Jun, GUO Delun. Microstructure in linear friction welded dissimillar titanium alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (7): 105-108,112.
    [8]GU Baolan, DING Dawei, WANG Li, XU Xuedong. Effects of heat treatment on microstructure and properties of electron beam welded TC4 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (10): 85-88.
    [9]LIU Shi-fu, SHEN Yi-fu, WANG Shao-gang. Microstructure analyse of surface Ti-metallized graphite[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 89-92.
    [10]Meng Qinseng, Wan Bao. Influence of microstructural appearances of slag on detachability of electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1993, (3): 202-206.
  • Cited by

    Periodical cited type(7)

    1. 张普,曹四龙. Al_2O_3+TiO_2复合颗粒对激光熔覆Inconel 718基润滑涂层显微组织及高温磨损行为的影响研究. 材料保护. 2024(06): 8-19 .
    2. 魏来,李丹,董振. 原位自生(Ti, V)C堆焊层的耐磨性能. 沈阳工业大学学报. 2023(01): 43-47 .
    3. 刘海浪,卢儒学,陈健,徐珖韬,张倩. 镍基合金电子束熔覆表面改性及高温耐磨性研究. 金属热处理. 2021(04): 161-166 .
    4. 吴雁楠,黄诗铭,朱平,马振一,兰博,何翰伟,郝博文. 原位碳化钛颗粒增强镍基喷焊层的组织与性能. 热加工工艺. 2021(22): 96-98+102 .
    5. 马强,陈明宣,孟君晟,李成硕,史晓萍,彭欣. 纯铜表面氩弧熔覆TiB_2/Ni复合涂层组织及耐磨性能. 焊接学报. 2021(09): 90-96+102 . 本站查看
    6. 王永东,杨在林,张宇鹏,朱艳. Y_2O_3对原位自生TiC增强Ni基涂层组织和性能影响. 焊接学报. 2020(02): 53-57+100 . 本站查看
    7. 陈鹏涛,曹梅青,吕萧,仇楠楠. 氩弧熔敷原位合成ZrC-TiB_2增强铁基涂层的组织与性能. 上海金属. 2020(05): 15-20 .

    Other cited types(2)

Catalog

    Article views (251) PDF downloads (4) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return