Citation: | WU Minghui, HUANG Haijun, WANG Xianwei. Robot welding path planning based on improved ant colony algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(10): 113-118. DOI: 10.12073/j.hjxb.2018390259 |
Wu M H, Pan G, Zhang T, et al. Design and optimal research of non-contact variable magnetic adsorption mechanism for wall-climbing welding robot[J]. International Journal of Advanced Robotic Systems, 2013, 63(10): 1 ? 10.
|
Zhang T, Wu M H, Zhao Y Z, et al. Optimal motion planning of mobile welding robot based on multivariable for broken line seams[J]. International Journal of Robotics and Automation, 2014, 29(2): 215 ? 223.
|
Yan X, Wu Q, Yan J, et al. A fast evolutionary algorithm for robot path planning[C]// 2007 IEEE International Conference on Control and Automation, Guangzhou: IEEE, 2007: 84-87.
|
张春伟, 刘海江, 姜冬冬. 基于遗传算法的白车身机器人焊接路径规划[J]. 同济大学学报: 自然科学版, 2011, 39(4): 576 ? 598
Zhang Chunwei, Liu Haijiang, Jiang Dongdong. Robot welding route planning in car-body welding process based on genetic algorithm[J]. Journal of Tongji University: Natural Science, 2011, 39(4): 576 ? 598 |
Wang X, Shi Y, Ding D, et al. Double global optimum genetic algorithm-particle swarm optimization-based welding robot path planning[J]. Engineering Optimization, 2016, 48(2): 299 ? 316.
|
Yang H, Shao H. Distortion-oriented welding path optimization based on elastic net method and genetic algorithm[J]. Journal of Materials Processing Technology, 2009, 209(9): 4407 ? 4412.
|
王春华, 邱立鹏, 潘德文. 改进蚁群算法的机器人焊接路径规划[J]. 传感器与微系统, 2017, 36(2): 75 ? 77
Wang Chunhua, Qiu Lipeng, Pan Dewen. Robot welding route planning based on improved ant colony algorithm[J]. Transducer and Microsystem Technologies, 2017, 36(2): 75 ? 77 |
金嘉琦, 刘 畅, 徐振伟. 基于改进蚁群算法的焊接机器人路径规划[J]. 重型机械, 2017(1): 44 ? 46
Jin Jiaqi, Liu Chang, Xu Zhenwei. Path planning of welding robot based on improved ant colony optimization[J]. Heavy Machinery, 2017(1): 44 ? 46 |
Hu J, Zhu Q B. Multi-objective mobile robot path planning based on improved genetic algorithm [C]//2010 International Conference on Intelligent Computation Technology and Automation, Changsha: IEEE Press, 2010: 752 -756.
|
林哲骋, 许 力. 一种应用于激光焊接轨迹规划的改进蚁群算法[J]. 焊接学报, 2018, 39(1): 107 ? 110
Lin Zhecheng, Xu Li. An improved ant colony optimization applied in programing laser welding path[J]. Transactions of the China Welding Institution, 2018, 39(1): 107 ? 110 |
Kong M. Solving path planning problem based on ant colony algorithm[C]// Control and Decision Conference, IEEE, 2017: 5391-5395.
|
Zeiler M D. ADADELTA: An adaptive learning rate method[J]. Computer Science, 2012: 42 ? 47.
|
韦 峰. 推荐系统中矩阵分解算法研究[D]. 合肥: 中国科学技术大学, 2017.
|
Li H C, Shi Y H, Wang G R. Automatic teaching of stereovision-guided welding robot using ant colony optimization algorithm[J]. China Welding, 2010, 19(1): 37 ? 42.
|
游晓明, 刘 升, 吕金秋. 一种动态搜索策略的蚁群算法及其在机器人路径规划中的应用[J]. 控制与决策, 2017, 32(3): 552 ? 556
You Xiaoming, Liu Sheng, Lü Jinqiu. Ant colony algorithm based on dynamic search strategy and its application on path planning of robot[J]. Control and Decision, 2017, 32(3): 552 ? 556 |
[1] | SHEN Lei, HUANG Jiankang, LIU Guangyin, YU Shurong, FAN Ding, SONG Min. Microstructure and properties of titanium alloy made by plasma arc and AC auxiliary arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 57-63. DOI: 10.12073/j.hjxb.20220918002 |
[2] | LI Junzhao, SUN Qingjie, YU Hang, ZHANG Pengcheng, LIU Yibo, ZENG Xianshan. Study on grain size and microstructure of TC4 titanium alloy TIG and laser welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 57-62, 70. DOI: 10.12073/j.hjxb.20211015001 |
[3] | WANG Leilei, LIU Ting, DUAN Shuyao, ZHAN Xiaohong. Effect of element distribution on the microstructure of FeCoCrNi high entropy alloy coating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 57-64. DOI: 10.12073/j.hjxb.20210707004 |
[4] | WANG Ting, WANG Yifan, WEI Lianfeng, LI Qixian, JIANG Siyuan. Microstructure and properties of low voltage electron beam wire deposition layer of TC4 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 54-59. DOI: 10.12073/j.hjxb.20200803002 |
[5] | QIN Hang, CAI Zhihai, ZHU Jialei, WANG Kai, LIU Jian. Microstructure and properties of TC4 titanium alloy by direct underwater laser beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 143-148. DOI: 10.12073/j.hjxb.2019400328 |
[6] | GAO Xiaogang1, DONG Junhui1, HAN Xu1, HOU Jijun1, XU Dewei2. Weld shape and microstructure of Ti6Al4V alloy fluoride A-TIG weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 31-34. DOI: 10.12073/j.hjxb.20161026006 |
[7] | LANG Bo, ZHANG Tiancang, TAO Jun, GUO Delun. Microstructure in linear friction welded dissimillar titanium alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (7): 105-108,112. |
[8] | GU Baolan, DING Dawei, WANG Li, XU Xuedong. Effects of heat treatment on microstructure and properties of electron beam welded TC4 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (10): 85-88. |
[9] | LIU Shi-fu, SHEN Yi-fu, WANG Shao-gang. Microstructure analyse of surface Ti-metallized graphite[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 89-92. |
[10] | Meng Qinseng, Wan Bao. Influence of microstructural appearances of slag on detachability of electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1993, (3): 202-206. |
1. |
张普,曹四龙. Al_2O_3+TiO_2复合颗粒对激光熔覆Inconel 718基润滑涂层显微组织及高温磨损行为的影响研究. 材料保护. 2024(06): 8-19 .
![]() | |
2. |
魏来,李丹,董振. 原位自生(Ti, V)C堆焊层的耐磨性能. 沈阳工业大学学报. 2023(01): 43-47 .
![]() | |
3. |
刘海浪,卢儒学,陈健,徐珖韬,张倩. 镍基合金电子束熔覆表面改性及高温耐磨性研究. 金属热处理. 2021(04): 161-166 .
![]() | |
4. |
吴雁楠,黄诗铭,朱平,马振一,兰博,何翰伟,郝博文. 原位碳化钛颗粒增强镍基喷焊层的组织与性能. 热加工工艺. 2021(22): 96-98+102 .
![]() | |
5. |
马强,陈明宣,孟君晟,李成硕,史晓萍,彭欣. 纯铜表面氩弧熔覆TiB_2/Ni复合涂层组织及耐磨性能. 焊接学报. 2021(09): 90-96+102 .
![]() | |
6. |
王永东,杨在林,张宇鹏,朱艳. Y_2O_3对原位自生TiC增强Ni基涂层组织和性能影响. 焊接学报. 2020(02): 53-57+100 .
![]() | |
7. |
陈鹏涛,曹梅青,吕萧,仇楠楠. 氩弧熔敷原位合成ZrC-TiB_2增强铁基涂层的组织与性能. 上海金属. 2020(05): 15-20 .
![]() |