Advanced Search
HU Yu, XUE Jiaxiang, JIN Li, DONG Changwen. Effect of process parameters on weld quality during double-pulsed gas metal arc welding of dissimilar stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 115-120. DOI: 10.12073/j.hjxb.2018390187
Citation: HU Yu, XUE Jiaxiang, JIN Li, DONG Changwen. Effect of process parameters on weld quality during double-pulsed gas metal arc welding of dissimilar stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 115-120. DOI: 10.12073/j.hjxb.2018390187

Effect of process parameters on weld quality during double-pulsed gas metal arc welding of dissimilar stainless steel

More Information
  • Received Date: April 11, 2018
  • To solve the problem of welding process parameters are difficult to control on dissimilar stainless steel(2205 and 316L), the double-pulsed melting inert-gas welding (DP-MIG) was conducted on the 2205 duplex stainless steel and 316L stainless steel. The effects of the number of strong pulses, the number of weak pulses and the welding speed were studied. The electrical parameters in the welding process were collected through the wavelet analyzer. In addition, the mechanical tensile and metallographic tests were executed. The results demonstrated that the welding speed had the highest impact on the welding quality among all three factors, which was followed by the number of weak pulses and the number of strong pulses had the least impact. The welded seam obtained by various numbers of strong and weak pulses was relatively uniform, indicating that the effect of the number of strong and weak pulses on the welded seam was relatively low. The tensile fracture mainly occurred in the joint and the base material part of the 316L stainless steel. When the welding speed was increased, the heat input reduced during the welding of the welded seam, the cooling rate of the welded seam accelerated, whereas the ferrite transition duration reduced, which led to a relatively fine structure.
  • 耿韶宁. 2205双相不锈钢高效化焊接接头组织和性能的研究[D]. 山东大学硕士学位论文, 2016.
    Thanaporn Thonondaeng, Kittichai Fakpan, Krittee Eidhed. Dissimilar metals welding of CP titanium to 304 stainless steel using GTAW process[J]. Applied Mechanics and Materials, 2016, 4215(848):43-47.
    Wichan Chuaiphan, Chandra Ambhorn Somrerk, Satian Niltawach, et al. Dissimilar welding between AISI 304 stainless steel and AISI 1020 carbon steel plates[J]. Applied Mechanics and Materials, 2013, 2187(268):283-290.
    秦国梁, 马宏, 耿培皓, 等. 45钢/304不锈钢连续驱动摩擦焊接工艺[J]. 焊接学报, 2015, 36(08):1-4. Qin Guoliang, Ma Hong, Geng Peihao, et al. Continuous-drive friction welding of 45 steel to 304 stainless steel[J]. Transactions of the China Welding Institution, 2015, 36(08):1-4.
    王治宇, 许海刚, 吴玮巍, 等. 2205双相不锈钢的激光-MIG复合焊接头性能[J]. 焊接学报, 2011, 32(2):105-108. Wang Zhiyu, Xu Haigang, Wu Weiwei, et al. Joint performance of duplex stainless 2205 by laser MIG hybrid welding[J]. Transactions of the China Welding Institution, 2011, 32(2):105-108.
    周峰, 赵霞, 查向东, 等. 一种新型镍基耐蚀合金与304奥氏体不锈钢异种金属焊接接头的组织和力学性能[J]. 金属学报, 2014, 50(11):1335-1342. Zhou Feng, Zhao Xia, Zha Xiangdong, et al. Microstructure and mechanical properties of the welding joint of a new corrosion resisting nickel-based alloy and 304 austenitic stainless steel[J]. Acta Metallurgica Sinica, 2014, 50(11):1335-1342.[DOI: 10.11900/0412.1961.2014.00284]
    姚屏, 薛家祥, 朱强, 等. 基于概率密度分布图的双丝脉冲焊稳定性定量评价[J]. 焊接学报, 2014, 35(7):51-54. Yao Ping, Xue Jiaxiang, Zhu Qiang et al. Quantitative evaluation of double wire pulsed welding stability based on probability density distribution[J]. Transactions of the China Welding Institution, 2014, 35(7):51-54.
    Yao Ping, Xue Jiaxiang, Zhong Liangwen, et al. Intelligent process expert database of double pulse MIG welding of Al-Si alloy[J]. China Welding, 2012, 21(1):59-63.
    谢煌生, 王磊磊, 沙幸威, 等. 强弱脉冲比率对AA6061铝合金双脉冲焊焊缝质量影响分析[J]. 焊接学报, 2015, 36(12):77-80. Xie Huangsheng, Wang Leilei, Sha Xingwei, et al. Analysis of strong and weak pulse ratio on weld quality of AA6061 aluminum alloy double pulsed gas metal arc welding[J]. Transactions of the China Welding Institution, 2015, 36(12):77-80.
    Yoganandh J, Kannan T, Babu S P K, et al. Optimization of GMAW process parameters in austenitic stainless steel cladding using genetic algorithm based computational models[J]. Experimental Techniques, 2013. 37(5):48-58.[DOI: 10.1111/ext.2013.37.issue-5]
  • Related Articles

    [1]REN Xianghui, MA Teng, WU Wei, HAN Shanguo. Microstructure and properties of 316L stainless steel parts fabricated by double wire CMT + P additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 96-103. DOI: 10.12073/j.hjxb.20231207001
    [2]ZHONG Qiming, XIE Fangxiang, WANG Zhenmin. Research of a novel double-pulsed MIG welding power supply[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 94-99. DOI: 10.12073/j.hjxb.2019400188
    [3]WANG Peng, LI Huan, YU Fusheng, ZHU Chunyuan, GAO Ying. Analysis of droplet transfer and electrical signal in triple-wire double-pulse MIG welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(10): 98-102. DOI: 10.12073/j.hjxb.2018390256
    [4]WU Kaiyuan, HE Zuwei, LIANG Zhuoyong, HUANG Xi. Double pulse welding method for twin-wire pulsed MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(5): 53-57. DOI: 10.12073/j.hjxb.20170512
    [5]MIAO Yugang, HAN Duanfeng, WU Bintao, XU Xiangfang, LI Xiaoxu. Characteristics of bypass-current MIG-TIG double-sided welding of stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (12): 29-32.
    [6]HUANG Jiankang, SHI Yu, LU Lihui, ZHU Ming, FAN Ding. Weld width control of double pulsed MIG welding for aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (5): 13-16.
    [7]Niu Yong, Xue Haitao, Li Huan, Zeng Zhoumo. Effect of peak pulse voltage on metal transfer and formation of weld in double-wire pulsed MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (1): 50-54.
    [8]Fan Ding, K. Nakata, M. Ushio. Study of YAG Laser-Pulsed MIG Hybrid Welding Process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (5): 81-83.
    [9]Bao Yefeng. Development of Pulsed MIG Welding Machine for Al-alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (1): 90-93.
    [10]Yin Shuyan, Gang Tie, Bu Huaquan. Microcumputer control system of synergic pulsed MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (1): 46-52.
  • Cited by

    Periodical cited type(7)

    1. 周海,王译唯,张岩,李维桐,马少伟,金佳祥,李敏. 不同工艺参数对S30408奥氏体不锈钢焊缝成形和性能的影响. 焊接技术. 2024(04): 54-59 .
    2. 孙斌,吴艳明,叶军,易武,朱红艳,樊闪闪,陈嘉良. 低代码可视化AI技术加速船舶焊接工艺智能化. 材料开发与应用. 2023(05): 58-69 .
    3. 姚屏,许敏,林茜,黄韵怡,王晓军. 机器人双脉冲弧焊工艺模式对铝合金焊缝质量的影响. 广东技术师范大学学报. 2023(06): 1-7 .
    4. 陈晔,姚屏,郑振兴,宾坤,陈美沂. 双脉冲MIG焊工艺参数对316L不锈钢焊缝成形及性能影响研究. 自动化与信息工程. 2022(03): 1-6+14 .
    5. 胥军,邓峰,苏田,李刚炎. 动力电池箱MIG焊的数值模拟及变形控制研究. 中山大学学报(自然科学版). 2021(05): 50-58 .
    6. 李林,薛家祥,武威,徐志伟. 6061铝合金薄板单脉冲与双脉冲MIG焊接比较分析. 轻合金加工技术. 2019(08): 66-71 .
    7. 赵太源,李亚军,肖莉. S30403不锈钢无缝钢管背面保护焊接技术. 焊接. 2019(11): 58-61+68 .

    Other cited types(7)

Catalog

    Article views (690) PDF downloads (83) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return