Advanced Search
ZHONG Qiming, XIE Fangxiang, WANG Zhenmin. Research of a novel double-pulsed MIG welding power supply[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 94-99. DOI: 10.12073/j.hjxb.2019400188
Citation: ZHONG Qiming, XIE Fangxiang, WANG Zhenmin. Research of a novel double-pulsed MIG welding power supply[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 94-99. DOI: 10.12073/j.hjxb.2019400188

Research of a novel double-pulsed MIG welding power supply

More Information
  • Received Date: August 21, 2018
  • In order to improve the overall performance of double-pulsed MIG welding equipment, a novel welding power is developed based on silicon carbide power devices. The inverting frequency is up to 100 kHz, which is beneficial to precisely control welding arc. Control circuit of the proposed welding power is composed of the main control circuit, a digital panel, wire feeder control circuit, in which STM32F405RGT6 is the control core. A corresponding control software is designed according to double-pulsed MIG welding task requirements. The incremental PID algorithm is used to control the output and double-pulsed welding is realized by single pulse output with pulsating wire feeding. Test result shows that the proposed welding power supply has a fast-dynamic response, which can effectively cooperate with the pulsating wire feeding to weld. The fish scales of the weld are clear without obvious defects.
  • 马德.数字控制铝合金双脉冲MIG焊工艺的研究[D].北京:北京工业大学, 2004.
    Hazra S, De A, Cheng L, et al. High switching performance of 1700-V, 50-A SiC power MOSFET over Si IGBT/BiMOSFET for advanced power conversion applications[J]. IEEE Transactions on Power Electronics, 2016, 31(7):4742-4754.
    Wang G, Mookken J, Rice J, et al. Dynamic and static behavior of packaged silicon carbide MOSFETs in paralleled applications[C]//Applied Power Electronics Conference, 2014:1478-1483.
    王振民,汪倩,王鹏飞,等.新一代WBG弧焊逆变电源[J].焊接学报, 2016, 37(7):49-52 Wang Zhenmin, Wang Qian, Wang Pengfei, et al. A new generation WBG arc welding inverter[J]. Transactions of the China Welding Institution, 2016, 37(7):49-52
    沙德尚,廖晓钟.双脉冲MIG/MAG焊全数字控制策略[J].北京理工大学学报, 2009, 29(7):605-607 Sha Deshang, Liao Xiaozhong. Full digital control strategy of double pulsed MIG/MAG welding[J]. Transactions of Beijing Institute of Technology, 2009, 29(7):605-607
    钱金川,朱守敏.全桥式逆变电源主电路设计[J].电工电气, 2010(04):12-19 Qian Jinchuan, Zhu Shoumin. Main circuit design of full-bridge reverse converter power supply[J]. Electrotechnics Electric, 2010(04):12-19
    Hazra S, Madhusoodhanan S, Moghaddam G, et al. Design considerations and performance evaluation of 1200 V, 100 A SiC MOSFET based converter for high power density application[J]. IEEE Transactions on Industry Applications, 2013, 52(5):4527-4268.
    Rice J, Mookken J. SiC MOSFET gate drive design considerations[C]//IEEE International Workshop on Integrated Power Packaging. IEEE, 2015:24-27.
    王振民,张福彪,王鹏飞,等.全数字机器人VPPA焊接电源[J].焊接学报, 2017, 38(7):5-8,30 Wang Zhenmin, Zhang Fubiao, Wang Pengfei, et al. Research on full digital robot VPPA welding power supply[J]. Transactions of the China Welding Institution, 2017, 38(7):5-8,30
    邓方雄,钟继光,石永华,等.水下焊接脉动送丝机构的研制[J].电焊机, 2006, 36(7):13-15 Deng Fangxiong, Zhong Jiguang, Shi Yonghua, et al. Study on the pulsed feeding wire system for underwater welding[J]. Electric Welding Machine, 2006, 36(7):13-15
    吴强,韩震宇,李程.基于增量式PID算法的无刷直流电机PWM调速研究[J].机电工程技术, 2013, 42(3):63-65 Wu Qiang, Han Zhenyu, Li Cheng. Based on the incremental PID algorithm for brushless DC motor PWM speed control research[J]. Mechanical&Electrical Engineering Technology, 2013, 42(3):63-65
  • Related Articles

    [1]WANG Zhenmin, JIA Jianjun, HU Jianliang, LIAO Haipeng, WU Jianwen, ZHANG Qin. Research on local dry underwater fast-frequency pulsed MIG welding power supply[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 13-19. DOI: 10.12073/j.hjxb.20230620002
    [2]RAO Jie, WU Jianwen, JIANG Donghang, TANG Jiajian, WANG Zhenmin. Development of pulse variable polarity welding power source based on SiC modules[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(7): 21-27. DOI: 10.12073/j.hjxb.20201211001
    [3]LU Lihui1, ZHANG Lihua1, SUN Weicheng1, SHI Yu2, FAN Ding2. Design of special power source for dual-arc pulsed MIG welding and test analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 53-57. DOI: 10.12073/j.hjxb.2018390095
    [4]JIN Li, XU Min, XUE Jiaxiang, ZHOU Yiqing. Effect of line energy on properties of aluminum alloy joints in double pulsed MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 89-92. DOI: 10.12073/j.hjxb.2018390020
    [5]WU Kaiyuan, HE Zuwei, LIANG Zhuoyong, HUANG Xi. Double pulse welding method for twin-wire pulsed MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(5): 53-57. DOI: 10.12073/j.hjxb.20170512
    [6]WU Kaiyuan, ZHANG Tao, HE Zuwei, LI Huajia. STM32 based power supply system for integrative twin-wire pulsed MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(11): 25-28.
    [7]WU Kaiyuan, CHENG Jia, HUANG Xi. DSP based parallel high-power inverter power system for pulsed MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(10): 1-4.
    [8]ZHANG Xiaofeng, LI Huan, YANG Lijun, GAO Ying. Effect of laser power on arc behavior and metal transfer in laser-twin-wire pulsed MIG hybrid welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(11): 23-26,62.
    [9]DI Yong, LI Huan, YANG Lijun, GU Xiaoyan, GAO Ying. Alternate arcing behavior of double-wire pulse MIG welding process with single power[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (7): 63-67.
    [10]Fan Ding, K. Nakata, M. Ushio. Study of YAG Laser-Pulsed MIG Hybrid Welding Process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (5): 81-83.
  • Cited by

    Periodical cited type(11)

    1. 余志辉. 电热水器行业数字化焊接电源运用分析. 上海轻工业. 2025(01): 153-155 .
    2. 王振民,宋哲龙,迟鹏,廖海鹏,张芩. 类人机器人焊接技术研究现状与展望. 机电工程技术. 2025(04): 1-13 .
    3. 王振民,贾建军,胡健良,廖海鹏,吴健文,张芩. 局部干法水下快频脉冲MIG焊电源研制. 焊接学报. 2024(04): 13-19+129-130 . 本站查看
    4. 苏立虎. 脉冲气体保护焊引弧和收弧控制技术研究. 上海电气技术. 2024(02): 40-43 .
    5. 王振民,唐嘉健,潘晓浩,饶杰,林三宝,徐孟嘉. 全数字大功率交流脉冲埋弧焊接电源. 机械工程学报. 2023(02): 96-103 .
    6. 饶杰,郑和俊,严云发. AC/DC电源变换器电磁兼容设计. 电子技术与软件工程. 2023(07): 163-167 .
    7. 吉霖,刘纪周,郭彦兵,高东峰,张旺. 基于后级斩波可控短路过渡GMAW电源设计. 热加工工艺. 2023(19): 106-110 .
    8. 姚屏,许敏,林茜,黄韵怡,王晓军. 机器人双脉冲弧焊工艺模式对铝合金焊缝质量的影响. 广东技术师范大学学报. 2023(06): 1-7 .
    9. 饶杰,吴健文,江东航,唐嘉健,王振民. 基于SiC模块的脉冲变极性焊接电源研制. 焊接学报. 2021(07): 21-27+98-99 . 本站查看
    10. 吴健文,徐孟嘉,范文艳,陈浩宇,江东航,王振民. 钛合金快频脉冲柔性波形调制TIG焊接工艺. 机械工程学报. 2020(06): 102-109 .
    11. 胡永鹅,龙琼,韩兴科,何波,王尧,杨秀芳. 铝合金材料焊接方法研究进展. 贵州农机化. 2020(03): 15-19 .

    Other cited types(10)

Catalog

    Article views (411) PDF downloads (180) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return