Advanced Search
YANG Yachao, QUAN Huimin, DENG Linfeng, ZHAO Zhenxing. Prediction method of welding machine parameters based on neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 32-36. DOI: 10.12073/j.hjxb.2018390008
Citation: YANG Yachao, QUAN Huimin, DENG Linfeng, ZHAO Zhenxing. Prediction method of welding machine parameters based on neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 32-36. DOI: 10.12073/j.hjxb.2018390008

Prediction method of welding machine parameters based on neural network

More Information
  • Received Date: July 10, 2016
  • In view of the fact that pulse MIG welding has many parameters and is difficult to adjust, a welding parameter prediction method based on neural network is proposed. This method, having established BP neural network model of welding parameters by adopting LM(levenberg-marquarlt) algorithm, and making full use of the known data to train the network, have realized the prediction of the output parameters in any given welding current state, and then conduct test weld on single and double pulse MIG welding respectively by using the predicted values of welding parameters. The results show that the prediction method of welding parameters based on neural network is of high accuracy, that the welding process is stable, and that the seams can be well-formed, thus achieving a good unified adjustment.
  • Sen M, Mukherjee M, Pal T K. Evaluation of correlations between DP-GMAW process parameters and bead geometry[J]. Welding Journal, 2015, 94(8): 265s-279s.[2] Jie Y I, CAO S, LI L,et al. Effect of welding current on morphology and microstructure of Al alloy T-joint in double-pulsed MIG welding[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(10): 3204-3211.[3] 林 放, 黄文超, 陈小峰, 等. 基于局部牛顿插值的数字化焊机参数自调节算法[J]. 焊接学报, 2011, 32(3): 33-36.Lin Fang, Huang Wenchao, Chen Xiaofeng,et al. Digitial welder parameters self-regulating algorithm based on partial Newton interPolation[J]. Transactions of the China Welding Insititution, 2011, 32(3): 33-36.[4] 薛家祥, 姜乘风, 张晓莉, 等. 基于最小二乘法的脉冲 MIG 焊参数一元化调节[J]. 焊接学报, 2014, 35(8): 75-78.Xue Jiaxiang, Jiang Chengfeng, Zhang Xiaoli,et al. Research on unified adjustment of pulsed MIG welding parameters based on least squares method[J]. Transactions of the China Welding Insititution, 2014, 35(8): 75-78.[5] 黄文超, 熊丹枫, 薛家祥. 铝硅合金双脉冲MIG焊专家数据库[J]. 焊接技术, 2009, 38(11): 43-46.Huang Wenchao, Xiong Danfeng, Xue Jiaxiang. Study on expert database of double pulse MIG welding for Al-Si alloy[J]. Welding Technology, 2009, 38(11): 43-46.[6] 陈小峰, 林 放, 魏仲华, 等. 基于数学建模的铝合金双脉冲MIG焊专家数据库设计[J]. 焊接学报, 2011, 32(5): 37-40.Cheng Xiaofeng, Lin Fang, Wei Zhonghua,et al. Double-pulsed MIG expert database based on mathematical modeling[J]. Transactions of the China Welding Insititution, 2011, 32(5): 37-40.[7] 刘 倩. 基于人工神经网络的电池容量预测[J]. 武汉理工大学学报, 2006, 28(3): 28-31.Liu Qian. Estimation for SOC of MH/Ni battery based on artificial neural network[J]. Journal of Wuhan University of Technology, 2006, 28(3): 28-31.
  • Related Articles

    [1]ZHANG Xinmeng, GAO Shikang, LI Gaohui, ZHANG Haifeng, ZHOU Li, WANG Ping. Study on the fatigue performance of bobbin tool friction stir welding of 6005A-T6 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 30-36. DOI: 10.12073/j.hjxb.20221119001
    [2]LI Chong, TIAN Yalin, QI Zhenguo, WANG Wei, YANG Yanlong, WANG Yijing. Microstructure and mechanical properties of non-weld-thinning friction stir welded 6082-T6 aluminum alloy joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 102-107. DOI: 10.12073/j.hjxb.20220104001
    [3]HAO Yunfei, MA Jianbo, BI Huangsheng, LI Chao, WANG Guoqing. Analysis of microstructure and mechanical properties of the aluminum alloy T-joint welded by stationary shoulder friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 48-54. DOI: 10.12073/j.hjxb.2019400180
    [4]HAO Yunfei, BI Huangsheng, DAN Ting, HAO Zhibin, WANG Guoqing. Influence of pin tool offset on the unconsumed interface and mechanical properties of the self-reacting friction stir welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 30-35. DOI: 10.12073/j.hjxb.2019400123
    [5]WANG Xijing, WEI Xueling, ZHANG Liangliang. Microstructural evolution and mechanical properties of friction stir welded 6082-T6 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 1-5. DOI: 10.12073/j.hjxb.2018390057
    [6]HE Fangzhou1, YANG Xinqi1, LI Dongxiao2, CUI Lei1. Effect of microstructural inhomogeneity on mechanical properties of stationary shoulder friction stir welded joints for 6061-T6 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(8): 115-118. DOI: 10.12073/j.hjxb.20150808004
    [7]ZHANG Hua, QIN Hailong, WU Huiqiang. Effect of process parameters on mechanical properties of friction stir welded 2195 Al-Li alloy joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(4): 19-23.
    [8]ZHANG Huijie, WANG Min, ZHANG Xiao, ZHANG Jingbao. Characteristics and joint microstructure-property analysis of bobbin tool friction stir welding of 2A14-T6 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(12): 65-68,104.
    [9]JI Shude, MENG Xiangchen, HUANG Yongxian, GAO Shuangsheng, LU Hao, MA Lin. Effect of rotational velocity of tool on mechanical properties of stationary shoulder friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(1): 51-54.
    [10]WANG Ting, ZHU Danyang, LIU Huijie, FENG Jicai. Experimental investigation of friction stir welding of 7050 aluminum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (8): 109-112.
  • Cited by

    Periodical cited type(3)

    1. 官紫妍,吴丰顺,周龙早,李可为,丁立国,李学敏. 功率模块纳米银烧结技术研究进展. 电子工艺技术. 2023(04): 1-6 .
    2. 赵鑫宇,刘强,程国文,林铁松,黄永德. 镀铜碳纳米管对铜基复合薄膜组织及性能的影响. 焊接学报. 2023(12): 56-62+140-141 . 本站查看
    3. 孙凤莲,李天慧,韩帮耀. Sn5Sb1Cu0.1Ni0.1Ag/Cu(Ni)焊点的抗时效性能. 焊接学报. 2020(02): 28-32+98 . 本站查看

    Other cited types(1)

Catalog

    Article views (758) PDF downloads (2) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return